Varieties and normalization of partially integrable analytic differential systems

Xiang Zhang (张 祥)

(Joint with Zengji Du and Valery Romanovski)

xzhang@sjtu.edu.cn

Advances in Qualitative Theory of Differential Equations

April 22, 2015

ヘロン 人間 とくほ とくほ とう

1

- Background and the related results.
- The main results.
- Sketch proof of the main results.

・ 同 ト ・ ヨ ト ・ ヨ ト

For an analytic differential system

$$\frac{dx}{dt} = \dot{x} = Ax + f(x) = F(x), \quad x \in (\mathbb{F}^n, 0), \ \mathbb{F} = \mathbb{C} \text{ or } \mathbb{R},$$
(1)

with

- $A \in M_n(\mathbb{F})$, the set of all $n \times n$ matrices with entries in \mathbb{F} ,
- f(x) = o(|x|) vector valued analytic function,

we will study:

- the varieties of partial integrability of system (1),
- the existence of analytic normalization,

provided that system (1) is partially integrable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Related to these two problems, there are classical Poincaré results :

If system (1) is a real planar one, and A has a pair of pure imaginary eigenvalues, it can be written as

$$\dot{u} = -v + p(u, v), \quad \dot{v} = u + q(u, v),$$
 (2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem P1. There exists an analytic function or a formal series $\Phi(u, v)$ such that

$$(-v+p(u,v))\frac{\partial \Phi}{\partial u}+(u+q(u,v))\frac{\partial \Phi}{\partial v}=\sum_{l=m}^{\infty}\alpha_{l}(u^{2}+v^{2})^{l},$$

where $2 \le m \in \mathbb{N}$, and α_l are polynomials in the coefficients of p(u,v) and q(u,v).

Note, if system (2) is polynomial,

 \Downarrow by Hilbert's basis theorem

- $\bigcap_{l} \{ \alpha_{l} = 0 \}$ is finitely determined, and
- it is a variety in the space of coefficients of system (2).

ヘロン 人間 とくほ とくほ とう

Theorem P2. System (2) has a center at the origin if and only if

- it has an analytic first integral in a neighborhood of the origin, and if and only if
- it is locally analytically equivalent to its Poincaré–Dulac normal form.

Note,

A similar result for a saddle of planar analytic Hamiltonian systems was obtained by Moser [CPMA 1956].

イロト イポト イヨト イヨト

Recall that system (1) is in Poincaré–Dulac normal form if

- A is in the Jordan normal form
- any monomial x^me_j in the *j*th component of f(x) is resonant,
 i.e. ⟨m, λ⟩ = λ_j, where
 - λ is the eigenvalues of A,

•
$$x^m = x_1^{m_1} \dots x_n^{m_n}$$
 for $x = (x_1, \dots, x_n)$ and $m = (m_1, \dots, m_n) \in \mathbb{Z}_+^n$

•
$$\mathbb{Z}_+ = \mathbb{N} \cup \{0\},$$

• $\langle\cdot,\cdot\rangle$ denotes the inner product of two vectors.

イロト イポト イヨト イヨト 三日

Poincaré–Dulac normal form theorem: *If*

- A is in the Jordan normal form, and
- f(x) is analytic or a formal series,

then

 system (1) can be transformed to its Poincaré–Dulac normal form by a near identity transformation (analytic or formal).

A near identity transformation is the one of the form

$$x = y + \varphi(y)$$

with $\varphi = o(|y|)$.

▲ □ ▶ ▲ □ ▶ ▲

Theorem P2 was generalized to

 any finite dimensional analytic systems (1) by Zhang [JDE 2013], Llibre et al [BSM 2012]:

Set

$$\mathscr{R}_{\boldsymbol{\lambda}} := \left\{ m \in \mathbb{Z}_{+}^{n} | \langle m, \boldsymbol{\lambda} \rangle = 0, |m| = m_{1} + \ldots + m_{n} \geq 2 \right\},$$

 r_{λ} : resonant rank, i.e.

maximum number of \mathbb{Q}_+ -linearly independent elements of \mathscr{R}_{λ} .

・ 回 ト ・ ヨ ト ・ ヨ ト

Theorem A. Assume that $n \ge 2$ and $\lambda \ne 0$. Then system (1) has n-1 functionally independent analytic first integrals in $(\mathbb{C}^n, 0)$ if and only if

- $r_{\lambda} = n 1$, and
- system (1) is analytically equivalent to its PD normal form

$$\dot{y}_i = \lambda_i y_i (1 + g(y)), \qquad i = 1, \dots, n,$$

by a near identity analytic normalization, where g(y) is an analytic function of y^m with $m \in \mathscr{R}_{\lambda}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem P1 was extended to any finite dimensional systems by Romanovski, Xia, Zhang [JDE 2014]

Theorem B. Let \mathscr{X} be the analytic vector field associated to system (1). The following hold.

(a) \exists series $\psi(x)$ with its resonant monomials arbitrary such that

$$\mathscr{X}(\boldsymbol{\psi}(\boldsymbol{x})) = \sum_{\boldsymbol{\alpha} \in \mathfrak{R}_{\lambda}} p_{\boldsymbol{\alpha}} \boldsymbol{x}^{\boldsymbol{\alpha}}, \tag{3}$$

where p_{α} are polynomials in the coefficients of \mathscr{X} and of the resonant monomials of ψ .

(b) If the vector field X has n - 1 functionally independent analytic or formal first integrals, then for any ψ satisfying (3), we have

$$p_{\alpha} = 0,$$
 for all $\alpha \in \mathfrak{R}_{\lambda}.$ (4)

Now we extend Theorem B to partially integrable systems.

Theorem 1 Assume that • \Re_{λ} has $d < n \mathbb{Q}_{+}$ -linearly independent elements, If the second integrals. Then (a) For any ψ satisfying (3), we have for all (5) $p_{\alpha}=0,$ $\alpha \in \mathfrak{R}_{\lambda}$.

ヘロン 人間 とくほ とくほ とう

= 990

Theorem 1 (Continuity)

(b) The vector field \mathscr{X} has d functionally independent first integrals of the form

$$H_1(x) = x^{\alpha_1} + h_1(x), \dots, H_d(x) = x^{\alpha_d} + h_d(x),$$
(6)

with

- α₁,..., α_d Q₊−linearly independent elements of ℜ_λ,
- each h_j(x), j = 1, ..., d, consisting of nonresonant monomials in x of degree larger than |α_j|.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Remark:

- The functions p_{α} in Theorem 1 are not uniquely defined,
- but they have the same set of zeros for any choice of the resonant coefficients.

Hence,

- we can set the resonant coefficients in $\psi(x)$ equal to zero,
- when system (1) is polynomial, the p_{α} are uniquely defined polynomials in the parameters of system (1)
- the zero set of these polynomials is an affine variety in the space of parameters of system (1).

ヘロン 人間 とくほ とくほ とう

Note that

 the number of functionally independent analytic or formal first integrals of *X* is less than or equal to the maximal number of Q₊-linearly independent elements of ℜ_λ.

So in the cases of Theorem 1 we call system (1) is

- partially integrable if d < n-1
- *completely integrable* (for simplicity, integrable) if d = n 1.

For this reason, the variety mentioned above is called *variety of partially integrable system* (1).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Remark:

• The methods for proving Theorem B cannot be applied to the proof of Theorem 1.

Because

• the key point in proving Theorem B is that the integrable differential system (1) has the PD normal form

diag
$$(\lambda_1 y_1, \ldots, \lambda_n y_n)(1+g(y))$$

with g(y) a scalar function or a scalar formal series.

 here partially integrable systems in general do not have this special PD normal form.

ヘロト ヘワト ヘビト ヘビト

Normalization of partially integrable systems

Set
$$\lambda = (\lambda', \lambda'')$$
 with $\lambda' = (\lambda_1, \dots, \lambda_k)$, $\lambda'' = (\lambda_{k+1}, \dots, \lambda_n)$ for some $k \in \{2, \dots, n\}$, and

$$\lambda_j \neq \lambda_l, \quad j \in \{1, \ldots, k\}, \ l \in \{k+1, \ldots, n\}.$$

System (1) can be written in

$$\dot{x}' = A'x' + f'(x', x''), \dot{x}'' = A''x'' + f''(x', x''),$$
(7)

・ 同 ト ・ ヨ ト ・ ヨ ト

with A' and A'' having respectively the eigenvalues λ' and λ'' . Let \mathscr{X}^* be the analytic vector field associated to system (7). According to Bibikov [LNM 1979], by definition

- system (7) is in Poincaré–Dulac normal form on invariant manifold if
 - f''(x', 0) = 0 and
 - the Taylor expansion of f'(x', 0) consists of resonant monomials.
- system (7) is *formally (analytically) equivalent* to its Poincaré–Dulac normal form on invariant manifold if after a near identity formal (analytic) change of coordinates system (7) is transformed to a normal form on invariant manifold.

Set

$$\mathfrak{R}_{\lambda'} = \left\{ m' \in \mathbb{Z}_+^k | \langle m', \lambda'
angle = 0, |m| \ge 2
ight\},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem 2

Assume that $\lambda' \neq 0$, and

• for any
$$m = (m', m'') \in \mathfrak{R}_{\lambda}$$
 we have $m'' = 0$,

• any component of $m' \in \mathfrak{R}_{\lambda'}$ cannot always vanish.

If \mathscr{X}^* has k-1 functionally independent analytic first integrals, then

- $\Re_{\lambda'}$ has exactly $k-1 \mathbb{Q}_+$ -linearly independent elements,
- \mathscr{X}^* is analytically equivalent to its PD normal form on invariant manifold

$$\dot{y}' = \operatorname{diag}(\lambda_1, \dots, \lambda_k) y'(1 + q(y')) + g^*(y', y''), \dot{y}'' = A'' y'' + g''(y', y''),$$
(8)

with $g^*(y',0) = 0$, g''(y',0) = 0, and all monomials of q(y') resonant.

Remark:

- In Theorem 2, the hyperplane y'' = 0 is invariant under the flow of the normal formal system (19).
- Theorem 2 is an extension from integrable systems to partially integrable ones.

Note: in Theorem 2

- m'' = 0 means that the resonance of λ only depends on λ'
- any component of m' ∈ ℜ_{λ'} does not always vanishes implies that the resonances depend on each component of λ'.

In these senses, the assumption on λ in Theorem 2 is not a restriction.

・ロット (雪) () () () ()

Preparations:

Let

- A_s be the semisimple part of A,
- \mathscr{X}_s be the linear vector field associated to $\dot{x} = A_s x$.

Proposition 1

Assume that

- system (1) is in the PD normal form,
- \mathscr{X}_s has *d* functionally independent polynomial first integrals.

Then system (1) has *d* functionally independent formal first integrals \Leftrightarrow it admits all polynomial first integrals of \mathscr{X}_s .

This result was obtained by Llibre et al [BSM2012].

Structure of the matrix *A* of the partially integrable system (1): Write A = diag(A', A'') with eigenvalues $\lambda = (\lambda', \lambda'')$ such that

(*H*) for $k = (k', k'') \in \Re_{\lambda}$ we have that k'' = 0 and that any component of k' cannot always vanish.

Proposition 2

Assume

• \mathscr{X}_s admits *d* functionally independent polynomial first integrals

• \mathscr{X} admits *d* functionally independent formal first integrals.

Let *A* have the decomposition (A', A'') satisfying (H). Then A' is diagonal.

Note: the decomposition of A is not restriction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Sketch proof of Proposition 2

Let

$$\dot{y} = Ay + g(y), \tag{9}$$

be the PD normal form of system (1).

they are also first integrals of $\dot{y} = Ay$. Set y = (y', y''), and $\alpha_j = (\alpha'_j, \alpha''_j)$ be the corresponding decomposition, j = 1, ..., d.

 \Downarrow By assumption (*H*)

$$y^{\alpha_j} = y'^{\alpha'_j}, \qquad j = 1, \dots, d,$$

are first integrals of system $\dot{y}' = A'y'$. Let

$$A'=\left(egin{array}{cccc} \lambda_1&&&&\ \delta_2&\lambda_2&&&\ &\ddots&\ddots&&\ &&&\delta_\ell&\lambda_\ell\end{array}
ight),$$

with $\delta_s = 0$ or 1, and in case $\delta_s = 1$ we have $\lambda_{s-1} = \lambda_s$. From

$$\langle A'y', \partial_{y'}y'^{lpha_j'}
angle = 0, \quad \langle \lambda', lpha_j'
angle = 0, \quad j = 1, \dots, d,$$

 $\Rightarrow \delta_s = 0 \text{ for } s = 2, \dots, \ell.$ $\Rightarrow A' \text{ is diagonal. } \Box$

Xiang Zhang: Shanghai Jiao Tong University Varieties and normalization of partially integrable systems

Proof of Theorem 1

Recall Theorem 1

Assume that

- \mathscr{X} has *d* functionally independent formal first integrals. Then
- (a) For any ψ satisfying (3), i.e. $\mathscr{X}(\psi(x)) = \sum_{\alpha \in \Re_{\lambda}} p_{\alpha} x^{\alpha}$, we have

$$p_{\alpha} = 0,$$
 for all $\alpha \in \mathfrak{R}_{\lambda}.$ (10)

イロト イポト イヨト イヨト

æ

(b) \mathscr{X} has d functionally independent first integrals of the form

$$H_1(x) = x^{\alpha_1} + h_1(x), \dots, H_d(x) = x^{\alpha_d} + h_d(x).$$
 (11)

Proof of (a)

Let $\psi(x)$ be a formal series satisfying (3). By contrary, assuming that \exists some $m_0 \in \Re_{\lambda}$ s.t. $v_{m_0} \neq 0$, and

$$\mathscr{X}(\psi(x)) = v_{m_0} x^{m_0} + \sum_{m \in \Re, \, |m| = |m_0|, m \neq m_0} v_m x^m + \text{h.o.t.}$$
(12)

Set $k_0 = |m_0|$.

 \Downarrow By the PD normal form theorem

 \exists a near identity transformation, saying

$$x = y + h(y) = H(y),$$
 (13)

which sends \mathscr{X} to its PD normal form vector field \mathscr{Y} , i.e.

$$\dot{y} = Ay + g(y) = G(y).$$

Then

$$\mathscr{X}(\boldsymbol{\psi}) \circ H(\boldsymbol{y}) = v_{m_0} \boldsymbol{y}^{m_0} + \sum_{\boldsymbol{m} \in \mathfrak{N}, \, |\boldsymbol{m}| = |\boldsymbol{m}_0|} v_{\boldsymbol{m}} \boldsymbol{y}^{\boldsymbol{m}} + \text{h.o.t.}$$
(14)

$$W(y) = \psi \circ H(y).$$

Then

$$\mathscr{Y}(W(y)) = (\partial_y H(y))^{-1} \mathscr{X} \circ H(y)(W(y)) = \mathscr{X}(\psi) \circ H(y).$$
(15)

Expanding W(y) in power series

$$W(y) = \sum_{\ell=m}^{\infty} W_{\ell}(y),$$

with W_ℓ 's homogeneous polynomials of degree ℓ . Then

- $m \leq k_0$.
- for $\ell < k_0$, W_ℓ consist of resonant monomials.

・ 回 ト ・ ヨ ト ・ ヨ ト

Furthermore, we get that

- \mathcal{Y} has *d* functionally independent first integrals.
- $W_m(y)$, $W_{m+1}(y)$,..., $W_{k_0-1}(y)$ are first integrals of \mathscr{Y} by Proposition 1.

So

$$\mathscr{Y}\left(\sum_{\ell=m}^{\infty} W_{\ell}(y)\right) = \mathscr{Y}\left(\sum_{\ell=k_0}^{\infty} W_{\ell}(y)\right).$$

This yields

$$\mathscr{Y}_1(W_{k_0}(y)) = v_{m_0} y^{m_0} + \sum_{m \in \mathfrak{R}, \, |m| = |m_0|} v_m y^m, \tag{16}$$

where \mathscr{Y}_1 is the linear part of \mathscr{Y} . Separate

$$W_{k_0}(y) = W_{k_0\mathfrak{r}}(y) + W_{k_0\mathfrak{n}}(y)$$

in the summation of the resonant and nonresonant parts.

Xiang Zhang: Shanghai Jiao Tong University Varieties and normalization of partially integrable systems

Using the decomposition A = diag(A', A''), we have

$$W_{k_0\mathfrak{r}}(y)=W_{k_0\mathfrak{r}}(y').$$

By Proposition 2 it follows that A' is diagonal. So

$$\mathscr{Y}_1(W_{k_0\mathfrak{r}}(y)) = \langle A'y', \partial_{y'}W_{k_0\mathfrak{r}}(y') \rangle \equiv 0.$$

This forces that

$$\mathscr{Y}_1(W_{k_0}(y)) = \mathscr{Y}_1(W_{k_0\mathfrak{n}}(y)) = L(W_{k_0\mathfrak{n}}(y)),$$

By the spectrum of the linear operator L, we get

 L(W_{k0}n(y)) is either identical zero or consists of nonresonant monomials.

Whereas the right hand side of (16) are nonvanishing resonant monomials.

This contradiction implies that $p_m \equiv 0$ in (3) for all $m \in \Re_{\lambda}$. Statement (*a*) follows.

(画) (ヨ) (ヨ)

Proof of (b).

System (1) is transformed to its PD normal form \mathcal{Y} , i.e.

$$\dot{y}' = A'y' + g'(y', y'')), \dot{y}'' = A''y'' + g''(y', y''),$$
(17)

through x = y + h(y) = H(y), where

$$A' = \operatorname{diag}(\lambda_1, \ldots, \lambda_\ell).$$

Since \Re_{λ} has exactly $d \mathbb{Q}_+$ -linearly independent elements, let $\alpha_1, \ldots, \alpha_d$ be its linearly independent elements. Then

$$\varphi_j(y) = y^{\alpha_j}, \qquad j = 1, \dots, d,$$

are *d* functionally independent first integrals of \mathscr{Y}_s , the semisimple part of \mathscr{Y}_1 .

By Proposition 1, it follows that φ_j 's are first integrals of \mathscr{Y} .

The transformation x = H(y) from \mathscr{X} to \mathscr{Y} is near identity shows

$$\varphi_j \circ H^{-1}(x) = x^{\alpha_j} + \text{h.o.t.}, \qquad j = 1, \dots, d,$$

are *d* functionally independent first integrals of \mathscr{X} . For proving that \mathscr{X} has *d* functionally independent first integrals satisfying the nonresonant conditions, we can choose *d* functionally independent functions in a neighborhood of the origin of the form

$$V_j(x) = x^{\alpha_j} + v_j(x), \qquad j = 1, \dots, d,$$
 (18)

with $v_j(x) = o(|x|^{|\alpha_j|})$ and its resonant monomials arbitrary, such that

$$\mathscr{X}(V_j(x)) = \sum_{k \in \mathfrak{R}} w_k^{(j)} x^k, \qquad j = 1, \dots, d,$$

where $w_k^{(j)}$ are polynomials in the coefficients of those monomials in \mathscr{X} and of $v_j(x)$ of degrees less than |k|.

 \mathscr{X} has *d* functionally independent first integrals, \Downarrow by statement (*a*)

$$w_k^{(j)} \equiv 0$$
 for all $k \in \Re$ and $j \in \{1, \dots, d\}$.

 $w_k^{(j)}$ are independent of the resonant monomials of $v_j(x)$. $\downarrow \downarrow$ We can choose $v_j(x)$ without resonant monomials. $\downarrow \downarrow$

 \mathscr{X} has d functionally independent first integrals

$$V_j(x) = x^{\alpha_j} + v_j(x), \qquad j = 1, \dots, d,$$

with $v_i(x)$ consisting of nonresonant monomials.

Statement (b) and consequently the theorem follows.

Recall Theorem 2

Assume: $\lambda' \neq 0$, and the resonance of λ depends only on λ' . If \mathscr{X}^* has k - 1 functionally independent analytic first integrals, then

- $\Re_{\lambda'}$ has exactly $k-1 \mathbb{Q}_+$ -linearly independent elements,
- the vector field X* is analytically equivalent to its PD normal form on invariant manifold

$$\dot{y}' = \operatorname{diag}(\lambda_1, \dots, \lambda_k) y'(1 + q(y')) + g^*(y', y''),$$

$$\dot{y}'' = A'' y'' + g''(y', y''),$$
(19)

イロト イポト イヨト イヨト 三日

with $g^*(y',0) = 0$, g''(y',0) = 0, monomials of q(y') resonant.

Its proof needs normal form on invariant manifold, see Bibikov [LNM1979]

Theorem C

If for $q' \in \mathbb{Z}_+^k$ with $|q'| \geq 2$ the following holds

$$\langle q', \lambda' \rangle - \lambda_{\ell} \neq 0, \quad \ell \in \{k+1, \dots, n\},$$

then there exists a formal change of coordinates

$$x = \begin{pmatrix} x' \\ x'' \end{pmatrix} = H(y) = y + h(y') = \begin{pmatrix} y' + h'(y') \\ y'' + h''(y') \end{pmatrix},$$
 (20)

which sends system (7) to its PD normal form on invariant manifold, where

- nonresonant monomials of h'(y') and monomials of h''(y') are uniquely determined,
- resonant monomials in h'(y') can be arbitrary.

Xiang Zhang: Shanghai Jiao Tong University

Varieties and normalization of partially integrable systems

Convergence of transformation in Theorem C.

Theorem D

Assume that

- $\langle q', \lambda' \rangle \lambda_{\ell} \neq 0$ for $q' \in \mathbb{Z}^k_+$ with $|q'| \ge 2$ and $\ell \in \{k+1, \dots, n\};$
- ∃ ε > 0 such that for any nonresonant monomials y'q' e_j of the normalization (20) from system (7) to its normal form on invariant manifold

$$\dot{y}' = A'y' + g'(y',y''), \quad \dot{y}'' = A''y'' + g''(y',y''),$$

it holds that $|\langle q', \lambda' \rangle - \lambda_k| > \varepsilon$, $k \in \{1, \dots, n\}$.

• $A'y' + g'(y', 0) = \text{diag}(\lambda_1, ..., \lambda_k)y'(1 + q(y')).$

If system (7) is analytic, then the normalization (20) is analytic.

イロト イポト イヨト イヨト 三日

Proof of Theorem 2.

Step 1: proving that the partially integrable system (7) is formally equivalent to its PD normal form on invariant manifold

$$\dot{y}' = A'y' + g'(y', y''), \quad \dot{y}'' = A''y'' + g''(y', y''),$$
 (21)

via the transformation (20)

By Theorem C, we only need to prove

$$\langle q', \lambda' \rangle \neq \lambda_j, \text{ for } q' \in \mathbb{Z}^k_+, \ |q'| \ge 2, \text{ and } j \in \{k+1, \dots, n\}.$$
 (22)

By contrary, if $\exists q'_0 \in \mathbb{Z}^k_+$ with $|q'_0| \ge 2$ and $\ell_0 \in \{k+1, \dots, n\}$ such that

$$\lambda_{\ell_0} = \langle q_0', \lambda'
angle.$$

ヘロン 人間 とくほ とくほ とう

Since $\Re_{\lambda'}$ has elements with its *j*th component nonvanishing for $j \in \{1, \dots, k\}, \qquad \qquad \Downarrow$

 $\exists \; q' \in \mathfrak{R}_{\lambda'}$ with $q'_0 \prec q'$ such that

$$\langle q',\lambda'
angle=0.$$

Separate $q' = q'_0 + \widetilde{q}'$, we have

$$0=\langle q', \lambda'
angle=\langle \widetilde{q}', \lambda'
angle+\lambda_{\ell_0}$$

for some $\widetilde{q}' \in \mathbb{Z}_+^k$ with $|\widetilde{q}'| \ge 1$, a contradiction. \downarrow The (22) is verified. By Theorem C, step 1 is down.

ヘロン 人間 とくほ とくほ とう

-

Step 2: Proving that the partially integrable systems (7) has the special normal form given in Theorem 2.

System (7) has k - 1 functionally independent analytic first integrals by assumption

₩

Its normal form system (21) has k-1 functionally independent formal first integrals.

↓ by Theorem 1

System (7) has the first integrals of the form

$$V_1(x) = x^{\alpha_1} + v_1(x), \dots, V_{k-1}(x) = x^{\alpha_{k-1}} + v_{k-1}(x),$$

with $\alpha_j \in \mathfrak{R}_{\lambda}$ for $j = 1, \dots, k-1 \mathbb{Q}_+$ -linearly independent, and $v_j(x) = o(|x|^{|\alpha_j|})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $\alpha_j = (\alpha'_j, \alpha''_j)$ according to the decomposition of λ . \downarrow $\alpha''_j = 0$, and so

$$x^{\alpha_j} = x'^{\alpha'_j}, \qquad j = 1, \dots, k-1.$$

 \downarrow by transformation (20) near identity System (21) has the functionally independent first integrals

$$W_j(y) := V_j \circ H(y) = y'^{\alpha'_j} + w_j(y', y''), \qquad j = 1, \dots, k-1.$$

↓ by $W_1(y),..., W_{k-1}(y)$ functionally independent ↓ by $y'^{\alpha'_1},...,y'^{\alpha'_{k-1}}$ functionally independent $W_1(y',0),..., W_{k-1}(y',0)$ are functionally independent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The above proofs show that

$$F_1(y') := W_1(y',0), \dots, F_{k-1}(y') := W_{k-1}(y',0)$$

are functionally independent first integrals of system $(21)|_{y''=0}$, i.e.

$$\dot{y}' = A'y' + g'(y', 0),$$
 (23)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

which is in th PD normal form \Downarrow By Zhang [JDE2008] First integrals $F_1(y'), \dots, F_{k-1}(y')$ of (23) are resonant. \Downarrow $\mathscr{Y}_s(F_j(y')) = 0$ for $j = 1, \dots, k-1$, where $\mathscr{Y}_s = \lambda_1 y_1 \frac{\partial}{\partial y_1} + \dots + \lambda_k y_k \frac{\partial}{\partial y_k}$. This shows that

the k − 1 linearly independent gradient vector fields
 ∇F₁(y'),...,∇F_{k−1}(y') are orthogonal to both vector fields
 𝔥_s and 𝔥'* associated to (23).

 $\label{eq:starsess} \begin{array}{c} \Downarrow \text{ in } k \text{ dimensional space} \\ \mathscr{Y}_s \text{ and } \mathscr{Y}'^* \text{ must be parallel. That is} \end{array}$

$$\mathscr{Y}^{\prime*} = (1+q(y^{\prime}))\mathscr{Y}_s,$$

The normal form system (21) has the desired form.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Step 3. Convergence of the normalization

By assumption $\Rightarrow \exists k - 1 \mathbb{Q}_+$ -linearly independent elements $\alpha'_j = (\alpha_{j1}, \dots, \alpha_{jk}) \in \mathfrak{R}_{\lambda'}$ for $j = 1, \dots, k - 1$ such that

$$\alpha_{j1}\lambda_1+\ldots+\alpha_{jk}\lambda_k=0, \quad j=1,\ldots,k-1.$$

\Downarrow without loss of generality

$$\lambda_s = \frac{p_s}{p} \lambda_1, \quad s = 2, \dots, k, \tag{24}$$

with $p \in \mathbb{N}$ and $p_s \in \mathbb{Z}_+$ for $s = 2, \ldots, k$.

 $\lambda_1 \neq 0$, and $\exists \ \sigma > 0$ such that if

1

$$\langle q', oldsymbol{\lambda}'
angle - oldsymbol{\lambda}_\ell
eq 0, ext{ for } q' = (q_1, \dots, q_k) \in \mathbb{Z}^k_+, \ell \in \{1, \dots, n\},$$

then

$$|\langle q',\lambda'
angle-\lambda_\ell|\geq\sigma,\quad q'\in\mathbb{Z}_+^k,\;\ell\in\{1,\ldots,n\}.$$

This follows from

$$|\langle q', \lambda' \rangle - \lambda_{\ell}| = \left| \frac{(q_1 p + q_2 p_2 + \dots + q_k p_k)\lambda_1 - p\lambda_{\ell}}{p} \right|.$$
(25)

and some calculations.

1

 \Downarrow by the three steps, and Theorem D The normalization (20) is convergence.

The theorem is proved.

谢 谢!

Thanks for your attention!

Xiang Zhang: Shanghai Jiao Tong University Varieties and normalization of partially integrable systems

・ 同 ト ・ ヨ ト ・ ヨ ト