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Abstract. The Abel differential equation y′ = p(x)y3
+ q(x)y2 with polynomial

coefficients p, q is said to have a center on [a, b] if all its solutions, with the initial
value y(a) small enough, satisfy the condition y(a)= y(b). The problem of giving
conditions on (p, q, a, b) implying a center for the Abel equation is analogous to the
classical Poincaré center-focus problem for plane vector fields. Center conditions are
provided by an infinite system of ‘center equations’. During the last two decades,
important new information on these equations has been obtained via a detailed analysis
of two related structures: composition algebra and moment equations (first-order
approximation of the center ones). Recently, one of the basic open questions in this
direction—the ‘polynomial moments problem’—has been completely settled in Pakovich
and Muzychuk [Solution of the polynomial moment problem. Proc. Lond. Math.
Soc. (3) 99(3) (2009), 633–657] and Pakovich [Generalized ‘second Ritt theorem’ and
explicit solution of the polynomial moment problem. Compositio Math. 149 (2013),
705–728]. In this paper, we present a progress in the following two main directions:
first, we translate the results of Pakovich and Muzychuk [Solution of the polynomial
moment problem. Proc. Lond. Math. Soc. (3) 99(3) (2009), 633–657] and Pakovich
[Generalized ‘second Ritt theorem’ and explicit solution of the polynomial moment
problem. Compositio Math. 149 (2013), 705–728] into the language of algebraic geometry
of the center equations. Applying these new tools, we show that the center conditions can
be described in terms of composition algebra, up to a ‘small’ correction. In particular,
we significantly extend the results of Briskin, Roytvarf and Yomdin [Center conditions
at infinity for Abel differential equations. Ann. of Math. (2) 172(1) (2010), 437–483].
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Second, applying these tools in combination with explicit computations, we start in this
paper the study of the ‘second Melnikov coefficients’ (second-order approximation of the
center equations), showing that in many cases vanishing of the moments and of these
coefficients is sufficient in order to completely characterize centers.

1. Introduction
In this paper we consider the Abel differential equation

y′ = p(x)y3
+ q(x)y2, (1.1)

with polynomial coefficients p, q , on a complex segment [a, b]. A solution y(x) of (1.1) is
called ‘closed’ on [a, b] if y(a)= y(b) for the initial element of y(x) around a analytically
continued to b along [a, b]. Equation (1.1) is said to have a center on [a, b] if any of
its solutions y(x), with the initial value y(a) small enough, are closed on [a, b]. For
p, q polynomials this property depends only on the end points a, b ∈ C, but not on the
continuation path.

Below we shall denote by P, Q the primitives P(x)=
∫ x

a p(τ ) dτ and Q(x)=∫ x
a q(τ ) dτ .

The center-focus problem for the polynomial Abel equation is to give an explicit, in
terms of the coefficients of p and q, necessary and sufficient condition on p, q, a, b
for (1.1) to have a center on [a, b]. The Smale–Pugh problem is to bound the number
of isolated closed solutions of (1.1). While we restrict ourselves to the polynomial
case only, there are other important settings of these problems, in particular, with p, q
trigonometric polynomials, piecewise-linear or even discontinuous piecewise-constant
functions (compare [1, 4, 6, 11, 12, 15–17, 21–23]). The relation of the above problems
to the classical Hilbert 16th and Poincaré center-focus problems for plane vector fields is
well known (see e.g. [10, 14, 25, 26]).

Algebraic Geometry enters the above problems from the very beginning: it is well
known that center conditions are given by an infinite system of polynomial equations in
the coefficients of p, q, expressed as certain iterated integrals of p, q (‘center equations’;
see §3 below). The structure of the ideal generated by these equations in an appropriate
ring (called the Bautin ideal), specifically, the number of its generators, determines local
bifurcations of the closed solutions as p, q vary.

One of the main difficulties in the center-focus and the Smale–Pugh problems is that
a general algebraic–geometric analysis of the system of center equations is very difficult
because of their complexity and absence of apparent general patterns.

In recent years the following two important algebraic–analytic structures, deeply
related to the center equations for (1.1), have been discovered: composition algebra of
polynomials and generalized polynomial moments of the form mk =

∫ b
a Pk(x)q(x) dx

(the last one is a special case of iterated integrals). The use of these structures provides
important tools for investigation of the center-focus problem for the Abel equation (see
[1–17, 20–23, 29] and references therein). In particular, it was shown in [10] that center
equations are well approximated by the moment equations mk =

∫ b
a Pk(x)q(x) dx = 0

and in fact coincide with them ‘at infinity’. Moment equations, in turn, impose (in many
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cases) strong restrictions on P and Q, considered as elements of the composition algebra
of polynomials (see §4 below). Notice that usually linear moment equations mk = 0 are
considered, where P is fixed while Q is the unknown. However, consideration of center
equations at infinity in [10, 20] and in the present paper leads to a nonlinear setting where
Q is fixed, while the equations have to be solved with respect to the unknown P .

The following composition condition imposed on P and Q plays a central role in
the study of the moment and center equations (see the references above): there exist
polynomials P̃, Q̃ and W with W (a)=W (b) such that

P(x)= P̃(W (x)), Q(x)= Q̃(W (x)).

Being a kind of ‘integrability condition’, the composition condition implies vanishing of
center and moment equations as well as of all the iterated integrals entering the center
equations. It is the only sufficient center condition known to us for the polynomial Abel
equation. Using the interrelation between center and moment equations at infinity, and
the composition condition, a rather accurate description of the affine center set for the
polynomial Abel equation has been given in [10]. Very recently, important results relating
center and composition conditions for trigonometric and polynomial Abel equations have
been obtained in [9, 15–17, 21–23].

These results, as well as some further examples and partial results (see [3, 7, 10–13,
16, 20] for the most recent contributions), seem to support the following ‘composition
conjecture’.

CONJECTURE 1. The center and composition sets for any polynomial Abel equation
coincide.

This conjecture was originally suggested in [8, Conjecture 1.6], together with its
extended versions [8, Conjectures 1.7 and 1.8], which all remain open. A similar
conjecture is known to be false for p, q trigonometric polynomials and a, b ∈ R (see [6]).
However, besides various special cases of polynomial Abel equations, described in papers
mentioned above, as well as in [21, 27] and in other publications, an equivalence of the
center and (the appropriate) composition conditions holds, for example, for piecewise-
constant p and q of a certain special form (‘rectangular paths’ [12], see also [4]). As
was shown in [12], for ‘rectangular paths’ the equivalence of the center and composition
conditions follows from a highly non-trivial result of [18], stating (roughly) that the group
of transformations of R generated by translations and positive rational powers is free.

Part of the methods developed in the present paper can be applied to arbitrary
coefficients p, q of the Abel equation (1.1). This certainly concerns all the constructions
in §2.1 below. In particular, we can apply our methods to p, q trigonometric polynomials,
Laurent polynomials or rational functions. The problem is that in the case of rational
p, q the consequences of the moments vanishing are much weaker than in the polynomial
case, while the presentation is technically much more involved (see [1, 34] and references
therein). The same is true for the description of the composition algebra of rational
functions, which turns out to be significantly more complicated than for polynomials
(compare [1, 15, 16, 32, 36]). So, in the present paper, we restrict ourselves to the
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polynomial case only. We plan to present our results for rational and trigonometric cases
separately.

Now, in [33, 35] essentially a complete description of the polynomial moments
vanishing has been achieved, as well as of the relevant polynomial composition algebra. In
particular, explicit necessary and sufficient conditions for vanishing of all the moments mk

have been given there, in terms of certain relations between P, Q, a, b in the composition
algebra of polynomials (see §4 below).

Accordingly, one of the main goals of the present paper is to give an algebraic–
geometric interpretation of the results of [31, 33, 35] in the context of the center-focus
problem for the polynomial Abel equation, and to apply these results to the study of center
conditions. Here we heavily use the fact, found in [10], that the moment equations are
the restrictions, in a proper ‘projective setting’, of the center equations to the infinite
hyperplane. On this basis we obtain new information on the affine center conditions,
significantly extending the results of [10].

Another main goal of this paper is to start the investigation of the ‘second Melnikov
coefficients’, which form the second set of the center equations ‘at infinity’. We show that
in many important cases vanishing of the moments and of the second Melnikov coefficients
implies composition, and so it is sufficient in order to completely characterize centers.

1.1. Statement of the main results. A general form of the results in this paper is the
following: as was explained above, the composition set is always a subset of the center
set. We show that the composition condition is indeed a good approximation to the
center condition, showing that the dimension of the (possibly existing) non-composition
components in the center set is small. In various circumstances we provide an upper bound
for the dimension of these possible non-composition components, which is significantly
smaller than the dimension of the composition center strata. In many cases this bound is
zero, so the center set coincides with the composition set up to a finite number of points.
The following theorems summarize our main new results on the center configurations for
the polynomial Abel equation (1.1). Since there is a one-to-one correspondence between
pairs of polynomials p, q and pairs of their primitives P, Q defined above, we shall
formulate all our results in terms of P and Q. Below we always assume that Q with
Q(a)= Q(b)= 0 is fixed, while P varies in the space Pd of all the polynomials of degree
up to d vanishing at a and b.

Let us start with a description of the composition set COSd,Q of all the polynomials P
in Pd , such that P and Q satisfy the composition condition.

THEOREM 1.1. For V ⊂ Pd and for any polynomial Q of degree at most five, the
composition set COSd,Q is a linear subspace in Pd of dimension at most [d/2]. For
6≤ deg Q ≤ 89, the set COSd,Q is a union of at most two linear subspaces in Pd and, for
deg Q ≥ 90, the set COSd,Q is a union of at most three linear subspaces. The dimension
of each of these subspaces is at most [d/2]; their double and triple intersections have
dimensions at most [d/6] + 1 and [d/90], respectively.

The rest of our results bound the dimension of the non-composition components, i.e.
those which are not contained in COSd,Q (if they exist).
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THEOREM 1.2. Consider equation (1.1) with Q fixed and P varying in the space Pd of all
the polynomials of degree up to d vanishing at a and b. Then the dimension of the non-
composition components of the center set of (1.1), if they exist, does not exceed [d/6] + 2.
In particular, this dimension is of order at most one-third of the maximal dimension of the
composition center strata (which is of order d/2, being achieved on the composition strata
with the right factor W (x)= (x − a)(x − b)).

The main steps in the proof of Theorem 1.2 are the following: we consider the projective
compactification PPd of Pd and use the fact, proved in [10], that the center equations
‘at infinity’ become the moment equations. Therefore, to bound the dimensions of the
affine non-composition components of the center set CS in the complex affine space Pd ,
it is enough to bound the dimensions of the non-composition components of the moment
vanishing set MS ‘at infinity’ in PPd . We show that these dimensions do not exceed
[d/6] + 2, using a complete description of the moment vanishing conditions, obtained
in [33].

More accurately, we define the set ND of ‘non-definite’ polynomials which provide
non-composition solutions to the moment equations, and bound from above its dimension.
Then the following theorem describes an inclusion structure at infinity of the sets we are
interested in.

THEOREM 1.3. For an algebraic set Y ⊂ Pd , let Ȳ denote the intersection of Y with the
infinite hyperplane of PPd . Then, for each irreducible non-composition component A of
the affine central set CS, we have Ā ⊂ CS ∩ ND⊂MS ∩ ND. Consequently, dim A ≤
dim(MS ∩ ND)+ 1.

In many specific cases, Theorem 1.3 allows us to improve the general bound provided
by Theorem 1.2. In order to formulate corresponding results, it is convenient to normalize
points a and b to be the points −

√
3

2 and
√

3
2 , respectively. Further, let S ⊂ P be a subset

of all polynomials Q ∈ P representable as a sum Q = S1(T2)+ S2(T3), where S1, S2 are
arbitrary polynomials, while T2, T3 are the Chebyshev polynomials of degrees two and
three, respectively (notice that the normalization of the interval [a, b] is chosen in such
a way that T2(a)= T2(b), T3(a)= T3(b)). Below we show that the dimension of S ∩
Pd does not exceed [ 23 d] + 1, so ‘most’ of the polynomials Q of degree d cannot be
represented in the above form.

THEOREM 1.4. Let P vary in the space P9. Then, for each fixed Q ∈ P\S, the center
set of (1.1) consists of a composition set and possibly a finite set of additional points. For
an arbitrary fixed Q, the dimension of the non-composition components of the center set
of (1.1) in P9 does not exceed one. For P varying in the space P11 and for an arbitrary
fixed Q, the dimension of the non-composition components of the center set of (1.1) does
not exceed two.

The next result heavily relies on computations with the second Melnikov coefficients.

THEOREM 1.5. Let P vary in the space P9. Then, for each fixed Q ∈ S ∩ P9, which is not
a polynomial in T2 or T3, the center set of (1.1) consists of a composition set and possibly
a finite set of additional points.
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Our last result (Theorem 6.6 in §6 below) concerns the center set in subspaces of
polynomials with a special structure. Here we formulate its important particular case.
Let Ud consist of all polynomials P ∈ Pd such that the degrees of x, appearing in P with
the non-zero coefficients, are powers of prime numbers.

THEOREM 1.6. Let P vary in Ud . Then, for any fixed Q, the center set of (1.1) in Ud

consists of a composition set and possibly a finite set of additional points.

2. Preliminaries: Poincaré mapping, center equations and composition condition
2.1. Poincaré mapping and center equations. Both the center-focus and the Smale–
Pugh problems can be naturally expressed in terms of the Poincaré ‘first return’ mapping
yb = G[a,b](ya) along [a, b]. Let y(x, ya) denote the element around a of the solution y(x)
of (1.1) satisfying y(a)= ya . The Poincaré mapping G[a,b] associates to each initial value
ya at a, sufficiently close to zero, the value yb at b of the solution y(x, ya) analytically
continued along [a, b].

According to the definition above, the solution y(x, ya) is closed on [a, b] if and only
if G[a,b](ya)= ya . Therefore, closed solutions correspond to the fixed points of G[a,b],
and (1.1) has a center if and only if G[a,b](y)≡ y. It is well known that G[a,b](y) for small
y is given by a convergent power series

G[a,b](y)= y +
∞∑

k=2

vk(p, q, a, b)yk . (2.1)

Therefore, the center condition G[a,b](y)≡ y is equivalent to an infinite sequence of
algebraic equations in p and q:

vk(p, q, a, b)= 0, k = 2, 3, . . . . (2.2)

Each vk(p, q, a, b) can be expressed as a linear combination of certain iterated integrals
of p and q along [a, b] (see [10] and Theorem 2.1 below).

2.2. Projective setting and center equations at infinity over fixed Q. Let P = P[a,b] be
the vector space of all complex polynomials P satisfying P(a)= P(b)= 0, and Pd the
subspace of P consisting of polynomials of degree at most d . We always shall assume that
the polynomials

P(x)=
∫ x

a
p(τ ) dτ, Q(x)=

∫ x

a
q(τ ) d, (2.3)

defined above, are elements of P . This restriction is natural in the study of the center
conditions, since it is forced by the first two of the center equations (2.2). Since
(2.3) provides a one-to-one correspondence between (p, q) and (P, Q), which is an
isomorphism of the corresponding vector spaces, in order to avoid cumbersome notation
all the results below are formulated in terms of (P, Q).

We shall assume that the points a 6= b are fixed, and usually shall omit a, b from the
notation.

From now on we shall assume that Q ∈ Pd1 is fixed, while P varies in a certain
linear subspace V of the space Pd . This restrictive setting significantly simplifies the
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presentation, although it describes only ‘slices’ of the center set. The approach of [10] and
of the present paper can be extended to the full coefficient space of (P, Q) ∈ Pd × Pd1 .
We consider this extension as an important research direction, but it significantly increases
the complexity of the algebraic geometry involved, and is beyond the scope of the present
paper. See [10] for a comparison of different possible settings of the problem.

Let a subspace V ⊂ P be given. We shall consider the projective space PV and the
infinite hyperplane HV⊂ PV. To construct PV, we introduce an auxiliary variable ν ∈ C
and consider the couples (S, ν), S ∈ V , with (S, ν) and (λS, λν) identified for any λ ∈ C,
λ 6= 0. The infinite hyperplane HV is defined in PV by the equation ν = 0.

Let us denote by v̂k(p, q)= v̂k(p, q, a, b) the ‘homogenization’ of the center equations
vk(P, Q, a, b)= 0 with respect to the variable P . In other words, we multiply each term
in vk by an appropriate degree of an auxiliary variable ν to make vk homogeneous.

Notice that the center equations can be considered in two ways: as polynomial equations
in the coefficients of P, Q, or as symbolic equations, containing ‘symbolic iterated
integrals’ of the form

∫
p
∫

q
∫

q . . . (which can be interpreted as poly-linear forms, i.e.
polynomials, in the symbols p, q). Since each p, q is a linear form in its coefficients, the
degrees of the polynomials in both interpretations are the same. Accordingly, the projective
space PV and the homogeneous polynomials v̂k(p, q)= 0 can be treated symbolically,
until the moment where we have to actually integrate and get the explicit answer.

We call ‘center equations at infinity’ the restrictions of the homogeneous center
equations to the infinite hyperplane HV. They are obtained by putting ν = 0 in
the homogeneous equations described above. The following Theorem 2.1 provides a
description of the center equations at infinity obtained in [10]. We take into account a
different order of the polynomials p and q in the Abel equation (1.1) in the present paper
and in [10].

THEOREM 2.1. [10] For k = 2, 4, . . . even and l = (k/2)− 1, the center equations at
infinity over Q are given by vanishing of the generalized moments

v∞k (P, Q)= ml(P, Q)=
∫ b

a
P l(x)q(x) dx = 0. (2.4)

For k odd, the center equations at infinity over Q are given by vanishing of the coefficients
of the ‘second Melnikov function’

v∞k (P, Q)= Dk(P, Q)= 0, (2.5)

represented by integer linear combinations
∑

nα Iα , with the sum running over all the
iterated integrals in p, q with exactly two appearances of q. Here α = (α1, . . . , αs), with
exactly two of α j equal to 1, and the rest equal to 2, and with

∑s
j=1 α j = k − 1. The

integrals Iα are defined as

Iα =
∫ b

a
hα1(x1) dx1

(∫ x1

a
hα2(x2) dx2 · · ·

(∫ xs−1

a
hα3(xs) dxs

)
· · ·

)
,

with h1 = q, h2 = p. The integer coefficients nα are given as the products nα =
(−1)s

∏s
r=1(k −

∑r
j=1 α j ).

In Proposition 6.1 below, the first four Melnikov equations at infinity Dk(P, Q)= 0 are
given explicitly.
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2.3. Center, moment and composition sets. Let us assume that Q ∈ Pd1 and a subspace
V ⊂ Pd are fixed. We define the center set CS= CSV,Q as the set of P ∈ V for which
equation (1.1) has a center. Equivalently, CS is the set of P ∈ V satisfying the center
equations (2.2). The moment set MS=MSV,Q consists of P ∈ V satisfying the moment
equations (2.4).

To introduce the composition set COS= COSV,Q , we recall the polynomial
composition condition defined in [8], which is a special case of the general composition
condition introduced in [6] (for brevity, below we shall use the abbreviation ‘CC’ for the
‘composition condition’).

Definition 2.1. Polynomials P, Q are said to satisfy the ‘composition condition’ on [a, b]
if there exist polynomials P̃ , Q̃ and W with W (a)=W (b) such that P and Q are
representable as

P(x)= P̃(W (x)), Q(x)= Q̃(W (x)).

The composition set COSV,Q consists of all P ∈ V for which P and Q satisfy the
composition condition.

It is easy to see that the composition condition implies a center for (1.1), as well as
the vanishing of each of the moments and iterated integrals above. So, we have COS⊂
CS, COS⊂MS.

Define CS,MS, COS as the intersections of the corresponding affine sets with the
infinite hyperplane HV. It follows directly from Theorem 2.1 that the following statement
is true.

PROPOSITION 2.1. We have COS⊂ CS⊂MS.

Notice that COS and MS are homogeneous and hence these sets are cones over
MS, COS. However, CS a priori may not be homogeneous, and the connection of the
affine part CS to CS may be more complicated.

Our main goal will be to compare the affine center set CS with the composition set COS.
For this purpose, we shall bound the dimension of the affine non-composition components
of CS, analyzing their possible behavior at infinity (§§5 and 6). To obtain these bounds,
we first describe the geometry of the composition set COS (§3) and compare the moment
set MS and its subset COS (§4).

3. The structure of the composition set
The geometry of the composition set reflects the algebraic structure of polynomial
compositions, which is well known to provide rather subtle phenomena. In comparison
with the classical theory developed by Ritt [38], we are interested in what we call below
[a, b]-compositions, i.e. compositions of polynomials under the requirement that some of
the factors take equal values at the points a and b.

3.1. Elements of Ritt’s theory. Let us recall first some basic facts on polynomial
composition algebra, including the classical first and second Ritt theorems [38].

http://journals.cambridge.org
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Definition 3.1. A polynomial P is called indecomposable if it cannot be represented
as P(x)= R ◦ S(x)= R(S(x)) for polynomials R and S of degree greater than one.
A decomposition P = P1 ◦ P2 ◦ · · · ◦ Pr is called maximal if all P1, . . . , Pr are
indecomposable and of degree greater than one. Two decompositions P = P1 ◦ P2 ◦

· · · ◦ Pr and P = Q1 ◦ Q2 ◦ · · · ◦ Qr , maximal or not, are called equivalent (notation
‘∼’) if there exist polynomials of degree one, µi , i = 1, . . . , r − 1, such that P1 =

Q1 ◦ µ1, Pi = µ
−1
i−1 ◦ Qi ◦ µi , i = 2, . . . , r − 1, and Pr = µ

−1
r−1 ◦ Qr .

The first Ritt theorem [38] states that any two maximal decompositions of a polynomial
P have an equal number of terms, and can be obtained from one another by a sequence of
transformations replacing two successive terms A ◦ C with B ◦ D, such that

A ◦ C = B ◦ D. (3.1)

Let us mention that decompositions of a polynomial P into a composition of two
polynomials, up to equivalence, corresponds in a one-to-one way to imprimitivity systems
of the monodromy group G P of P (see e.g. [38] or [32]). In their turn, imprimitivity
systems of G P are in a one-to-one correspondence with subgroups A of G P containing
the stabilizer Gω of a point ω ∈ G. In particular, for a given polynomial P , the number of
its right composition factors W , up to the change W → λ ◦W , where λ is a polynomial
of degree one, is finite. Below we shall call (with a slight abuse of notation) two right
composition factors W and λ ◦W of P , where λ is a polynomial of degree one, equivalent,
and write W ∼ λ ◦W . We also usually shall write just ‘right factor’ of P instead of
‘compositional right factor’.

The first Ritt theorem reduces the description of maximal decompositions of
polynomials to the description of indecomposable polynomial solutions of the
equation (3.1). It is convenient to start with the following result [19]: if polynomials
A, B, C, D satisfy (3.1), then there exist polynomials U, V, Â, B̂, Ĉ, D̂, where

deg U = GCD(deg A, deg B), deg V = GCD(deg C, deg D), (3.2)

such that
A =U ◦ Â, B =U ◦ B̂, C = Ĉ ◦ V, D = D̂ ◦ V (3.3)

and
Â ◦ Ĉ = B̂ ◦ D̂. (3.4)

In particular, if deg A = deg B, then necessarily A ◦ C and B ◦ D are equivalent as
decompositions. More generally, if deg B|deg A, then there exists a polynomial W such
that the equalities

A = B ◦W, D =W ◦ C

are satisfied.
Note that the above result concerning the reduction of (3.1) to (3.4) is equivalent to

the statement that the lattice of imprimitivity systems of the monodromy group G of a
polynomial P of degree n is isomorphic to a sublattice of the lattice Ln consisting of all
divisors of n, where by definition

d1 ∧ d2 = GCD(d1, d2), d1 ∨ d2 = LCM(d1, d2)
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(see [28]). For example, for the polynomials zn the corresponding lattices consist of all
divisors of n, since, for any d|n, the equality zn

= zd
◦ zn/d holds. The same is true

for the Chebyshev polynomials Tn , since the equality Tn(cos φ)= cos nφ implies that
Tn = Td ◦ Tn/d for any d|n. On the other hand, for an indecomposable polynomial P ,
the corresponding lattice contains only elements 1 and n.

The second Ritt theorem [38] states that if A, B, C, D satisfy (3.1) and degrees of A
and B as well as of C and D are coprime, then there exist linear polynomials U, V such
that (3.3) and (3.4) hold and, up to a possible replacement of Â by B̂ and Ĉ by D̂, either

Â ◦ Ĉ ∼ zn
◦ zr R(zn), B̂ ◦ D̂ ∼ zr Rn(z) ◦ zn, (3.5)

where R(z) is a polynomial, r ≥ 0, n ≥ 1 and GCD(n, r)= 1 or

Â ◦ Ĉ ∼ Tn ◦ Tm, B̂ ◦ D̂ ∼ Tm ◦ Tn, (3.6)

where Tn and Tm are the Chebyshev polynomials, n, m ≥ 1 and GCD(n, m)= 1. In
particular, this holds when A, B, C, D solving (3.1) are indecomposable, and the
decompositions A ◦ C and B ◦ D are non-equivalent, since in this case the degrees of
polynomials U, V in (3.2) and (3.3) are necessarily equal to one.

Clearly, the second Ritt theorem together with the previous result imply the following
statement: if A, B, C, D satisfy (3.1), then there exist polynomials U, V such that (3.2),
(3.3) and (3.4) hold and, up to a possible replacement of Â by B̂ and Ĉ by D̂, either (3.5)
or (3.6) holds.

3.2. [a, b]-compositions. Now we return to [a, b]-compositions, i.e. compositions of
polynomials under the requirement that some of the right factors take equal values at two
distinct points a and b.

Definition 3.2. Let a polynomial P satisfying P(a)= P(b) be given. We call a polynomial
W a right [a, b]-factor of P if P = P̃ ◦W for some polynomial P̃ and W (a)=W (b). A
polynomial P is called [a, b]-indecomposable if P(a)= P(b) and P does not have right
[a, b]-factors non-equivalent to P itself.

Remark. Notice that any right [a, b]-factor of P necessarily has degree greater than one,
and that an [a, b]-indecomposable P may be decomposable in the usual sense.

PROPOSITION 3.1. Any polynomial P up to equivalence has a finite number of [a, b]-
indecomposable right factors W j , j = 1, . . . , s. Furthermore, each right [a, b]-factor W
of P can be represented as W = W̃ (W j ) for some polynomial W̃ and j = 1, . . . , s.

Proof. As was mentioned above, up to equivalence there are only finitely many general
right factors W of P . In particular, this is true for [a, b]-indecomposable right [a, b]-
factors W j of P .

Now let W be a right [a, b]-factor of P . If it is [a, b]-indecomposable, then, by the first
part of the proposition, W = λ ◦W j for some j = 1, . . . , s, with λ a linear polynomial.
Otherwise, W can be represented as W = V ◦ Ŵ , where Ŵ is a right [a, b]-factor of P and
deg V > 1. Since deg Ŵ < deg W , it is clear that continuing this process we ultimately
will find an [a, b]-indecomposable right factor W j of P such that W = W̃ (W j ). �
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An easy consequence of Proposition 3.1 is the following description of the composition
set given in [10].

PROPOSITION 3.2. Let W j , j = 1, . . . , s, be all indecomposable right [a, b]-factors of
Q. Then the set COSV,Q is a union of the linear subspaces L j ⊂ V , j = 1, . . . , s, where
L j consists of all the polynomials P ∈ V representable as P = P̃(W j ), j = 1, . . . , s for
a certain polynomial P̃.

It has been recently shown in [33] that for any P ∈ P , the number s of its non-equivalent
[a, b]-indecomposable right factors can be at most three. Moreover, if s > 1, then these
factors necessarily have a very special form, similar to what appears in Ritt’s description
above.

The precise statement is given by the following theorem [33, Theorem 5.3].

THEOREM 3.1. Let complex numbers a 6= b be given. Then, for any polynomial P ∈
P[a,b], the number s of its [a, b]-indecomposable right factors W j , up to equivalence,
does not exceed three.

Furthermore, if s = 2, then either

P =U ◦ zrn Rn(zn) ◦U1, W1 = zn
◦U1, W2 = zr R(zn) ◦U1,

where R,U,U1 are polynomials, r > 0, n > 1, GCD(n, r)= 1 or

P =U ◦ Tnm ◦U1, W1 = Tn ◦U1, W2 = Tm ◦U1,

where U,U1 are polynomials, n, m > 1, GCD(n, m)= 1.
On the other hand, if s = 3, then

P =U ◦ z2 R2(z2) ◦ Tm1m2 ◦U1,

W1 = T2m1 ◦U1, W2 = T2m2 ◦U1, W3 = z R(z2) ◦ Tm1m2 ◦U1,

where R,U,U1 are polynomials, m1, m2 > 1 are odd and GCD(m1, m2)= 1.

Notice that in all the cases above U1(a) 6=U1(b), while W j (a)=W j (b).
We are interested in the stratification of the space Pd of polynomials P of degree d

according to the structure of their [a, b]-indecomposable right [a, b]-factors. Following
Theorem 3.1, let us use the following notation for the appropriate strata.

Definition 3.3. Let DECd
s (a, b)⊂ Pd denote the set of polynomials P of degree at

most d satisfying P(a)= P(b)= 0 and possessing exactly s non-equivalent [a, b]-
indecomposable right factors. For s = 1, we write DECd

1(a, b)= DECd
1,0(a, b) ∪ DECd

1,1
(a, b). Here DECd

1,0(a, b) consists of polynomials P for which their only indecomposable
right factor W is equivalent to P . In turn, DECd

1,1(a, b) consists of P for which W is not
equivalent to P and hence deg W < deg P .

As a first consequence of Theorem 3.1, we get upper bounds on the dimensions of the
sets DECd

s (a, b) considered as subsets of the complex space Cd−1, which we identify
with Pd .
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PROPOSITION 3.3. The set DECd
1,0(a, b) consists of [a, b]-indecomposable polynomials

P ∈ Pd and its dimension is d − 1. We have DECd
1,1(a, b)= ∅ for d ≤ 3, and dim DECd

1,1
(a, b)≤ [d/2] for d ≥ 4. Also, DECd

2(a, b)= ∅ for d ≤ 5, and dim DECd
2(a, b)≤

[d/6] + 1 for d ≥ 6. And, DECd
3(a, b)= ∅ for d ≤ 89, and dim DECd

3(a, b)≤ [d/90]
for d ≥ 90.

Proof. Assume that we are given l parametric families of polynomials Sr =

{Sr (τr , z)}, r = 1, . . . , l, with τr ∈6r ⊂ Cnr being the parameters of Sr . We assume
that the degree of the polynomials Sr (τr , z) remains constant and equal to dr for all the
values of the parameters τr ∈6r . Put τ = (τ1, . . . , τl) and let

Pτ = S1(τ1) ◦ S2(τ2) ◦ · · · ◦ Sl(τl).

The degree of the polynomials Pτ of this form is d1 · · · · · dl and they form a parametric
family with the parameters τ = (τ1, . . . τl) ∈ Cn, where n = n1 + · · · + nl .

The dimension D of the stratum S in P formed by the polynomials Pτ as above is at
most n, and it may be strictly less than n, since the parametric representation as above may
be redundant. The requirement that Pτ ∈ Pd is equivalent to d1 · · · · · dl ≤ d.

So, in order to bound from above the dimensions of the strata DECd
s (a, b), we

have to accurately estimate the number D ≤ n1 + · · · + nl of free parameters, and the
degrees d1, . . . , dl in composition representations of the corresponding polynomials P ,
provided by Theorem 3.1. We have to take into account the redundancy in the parametric
representation, and then to maximize D under the constraint d1 · · · · · dl ≤ d.

Notice that Pd =
⋃3

s=1 DECd
s (a, b). Let us now consider the sets DECd

s (a, b) for
s = 1, 2, 3 case by case. We shall see below that all the strata DECd

s (a, b), besides
the stratum DECd

1,0(a, b), consisting of [a, b]-indecomposable polynomials P , have
dimension strictly smaller than dim Pd = d − 1. Hence, dim DECd

1,0(a, b)= d − 1. (This
follows immediately also from the fact that DECd

1,0(a, b) consists of generic polynomials
in Pd .)

Now, each P ∈ DECd
1,1(a, b) has a form P = S1 ◦ S2, with deg S1 = d1 > 1, deg S2 =

d2 > 1, since we assume that P possesses a right [a, b]-factor S2, not equivalent to P . In
this case d ≥ d1d2 is at least four, and S1 and S2 can be any polynomials of degrees d1 and
d2 with the only restrictions S2(a)= S2(b) and S1(S2(a))= 0. Hence, n1 = d1, n2 = d2.
On the space Cn1+n2 of the parameters of (S1, S2) acts a two-dimensional group 0 of
linear polynomials γ . It acts by transforming (S1, S2) into (S1 ◦ γ, γ

−1S2). This action
preserves P . Accordingly, we have to maximize D = d1 + d2 − 2 under the constraint
d1d2 ≤ d . For d even, this maximum is achieved for d1 = 2 or d2 = 2 and it is d/2.
For d odd, still d1 = 2 or d2 = 2, but the maximum of D is (d − 1)/2. Finally, we get
dim DECd

1(a, b)≤ [d/2].
Now let us consider the case s = 2. In this case, by Theorem 3.1, we have two options.
The first option is that P =U ◦ zrn Rn(zn) ◦U1, where U (z), R(z),U1(z) are

polynomials, r > 0, n > 1 and GCD(n, r)= 1, and zn and zr R(zn) take equal values at
U1(a) 6=U1(b).

Here, denoting the degrees of U,U1, R by k, m, l ≥ 1, respectively, we get
deg P = k · n(r + ln) · m ≥ 6, while the number of the independent parameters, i.e. the
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dimension of the corresponding strata, is at most k + l + m − 1 (we take into account
the requirements W1(a)=W1(b), W2(a)=W2(b), P(a)= P(b)= 0 and the fact that the
scaling parameters of U and of R act equivalently on P). So, we have to maximize
k + l + m − 1 under the constraint k · n(r + ln) · m ≤ d. The variables are integers k ≥ 1,
l ≥ 1, m ≥ 1, r ≥ 1, n ≥ 2, GCD(n, r)= 1.

Let us first fix l, r, n. As above, the maximum of k + l + m − 1 is attained either
for k = 1, m = [d/(n(r + ln))] or for k = [d/(n(r + ln))], m = 1. In both cases it is
l + [d/(n(r + ln))], and this expression increases as l decreases. So, we can put l = 1
and so we get [d/(n(r + n))] + 1. Once more, this expression increases as n, r (which do
not enter the maximized sum) decrease. Their minimal possible values are r = 1, n = 2
and we get k + l + m − 1= [d/6] + 1.

The second option is that P =U ◦ Tnm ◦U1, with n, m > 1, GCD(n, m)= 1, and
Tm and Tn take equal values at U1(a) and U1(b). Denote the degrees of U and U1 by
k and l, respectively. We get deg P = klmn ≥ 6, while the number of the independent
parameters, i.e. the dimension of the corresponding strata, is at most k + l − 1 (we take
into account the requirements that Tm and Tn take equal values at U1(a) and U1(b), and
P(a)= P(b)= 0). By exactly the same reasoning as above, we conclude that the maximal
dimension of the corresponding strata is achieved at either deg U = 1 or deg U1 = 1, and
it is at most [d/mn]. The minimal possible values for m, n here are 2 and 3, so we get the
bound [d/6], which is smaller than the one above.

It remains to consider the case s = 3. In this case, by Theorem 3.1, we have P =U ◦
z2 R2(z2) ◦ Tm1m2 ◦U1, with U, R,U1 as above, m1, m2 > 1 odd and GCD(m1, m2)= 1.
In addition, T2m1 , T2m2 and z R(z2) ◦ Tm1m2 take equal values at U1(a) 6=U1(b).

As above, denoting the degrees of U,U1, R by k, m, l, respectively, we get deg P =
k · (4l + 2)m1m2 · m ≥ 90. The number of the independent parameters, i.e. the dimension
of the corresponding strata, is here at most k + l + m − 2 (we take into account, besides
the requirements that W1, W2, W3 take equal values at a, b and P(a)= P(b)= 0, also the
fact that the scaling parameters of U and of R act equivalently on P). Maximizing the
last expression exactly as above, we conclude that the maximum is achieved for l = 1,
m1 = 3, m2 = 5 and either k = 1, m = [d/((4l + 2)m1m2)] = [d/90] or m = 1, k =
[d/90]. This maximum is equal to [d/90]. This completes the proof of Proposition 3.3. �

Based on Proposition 3.3 and Theorem 3.1, we can now give a much more accurate
description of the composition set COSV,Q for V ⊂ Pd .

THEOREM 3.2. For V ⊂ Pd and for any polynomial Q of degree at most five, the
composition set COSV,Q is a linear subspace L in V with dim L ≤ [d/2]. For 6≤
deg Q ≤ 89, the set COSV,Q is a union of at most two linear subspaces in V , and for
deg Q ≥ 90 the set COSV,Q is a union of at most three linear subspaces. The dimension
of each of these subspaces is at most [d/2]; their double and triple intersections have
dimensions at most [d/6] + 1 and [d/90], respectively.

Proof. It is sufficient to consider the case V = Pd . Let W j , j = 1, . . . , s be all the
mutually prime right [a, b]-factors of Q. By Proposition 3.3, for Q of degree at most
five we have s = 1. For 6≤ deg Q ≤ 89, we have s ≤ 2 and for deg Q ≥ 90 we have
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s ≤ 3. Next, by Proposition 3.2, COSPd ,Q is a union of linear subspaces L j = {P ∈ Pd ,

P = P̃(W j )}.
Next, notice that if deg W j = d, then L j is one dimensional and, if deg W j < d, then

L j ⊂ DECd
1,1(a, b) ∪ DECd

2(a, b) ∪ DECd
3(a, b).We also have L i ∩ L j ⊂ DECd

2(a, b) ∪
DECd

3(a, b), L i ∩ L j ∩ Lk ⊂ DECd
3(a, b). All the required bounds on the dimensions of

L j now follow directly from Proposition 3.3. �

Remark. In fact, the dimensions of the linear subspaces L j and of their intersections may
be strongly smaller than the bounds in Theorem 3.2. The reason is that in this theorem
we do not take into account, for example, the fact that if Q has mutually prime right
[a, b]-factors W1, W2, then their degrees, by Theorem 3.1, cannot both be equal to two.
Another reason is that in the setting of Theorem 3.2 the right factors are fixed, while in
Proposition 3.3 they are variable, which also decreases the dimensions of the strata of
COSPd ,Q in comparison with the strata DECd

s (a, b).

4. Moment vanishing versus composition
The main result of [33] can be formulated as follows.

THEOREM 4.1. Let P with P(a)= P(b) be given and let W j , j = 1, . . . , s be all its non-
equivalent [a, b]-indecomposable right [a, b]-factors. Then, for any polynomial Q, all
the moments mk =

∫ b
a Pk(x)q(x) dx, k ≥ 0, vanish if and only if Q =

∑s
j=1 Q j , where

Q j = Q̃ j (W j ) for some polynomial Q̃ j .

This theorem combined with Theorem 3.1 provides an explicit description for vanishing
of the polynomial moments. In order to use it for the study of the moment set, let us
introduce the notions of ‘definite’ and ‘codefinite’ polynomials.

Definition 4.1. Let V, V1 ⊂ P = P[a,b] be fixed linear spaces. A polynomial P ∈ P
is called V1-definite if, for any polynomial Q ∈ V1, vanishing of the moments mk =∫ b

a Pk(x)q(x) dx, k ≥ 0, implies the composition condition on [a, b] for P and Q. The
set of such P is denoted DV1 .

A polynomial Q ∈ P is called V -codefinite if, for any polynomial P ∈ V , vanishing of
the moments mk =

∫ b
a Pk(x)q(x) dx, k ≥ 0, implies the composition condition on [a, b]

for P and Q. The set of such Q is denoted CODV .
If V1 = P or V = P (with respect to the corresponding P or Q), we call polynomials

defined above [a, b]-definite or [a, b]-codefinite correspondingly, and denote their sets by
D or COD.

Definite polynomials have been initially introduced and studied in [37]. Some of their
properties have been described in [31]. The notion of codefinite polynomials is apparently
new (although some examples have appeared in [10]). Below we give a characterization
of definite and codefinite polynomials, but many questions still remain open.

4.1. Definite polynomials. Theorem 4.1 allows us to give a complete description of
[a, b]-definite polynomials.
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THEOREM 4.2. A polynomial P is [a, b]-definite if and only if it has, up to equivalence,
exactly one [a, b]-indecomposable right factor W .

Proof. Assume that P has exactly one [a, b]-indecomposable right factor W . By
Theorem 4.1, for any polynomial Q, vanishing of mk for all k ≥ 0 implies that there exists
Q̃ such that Q = Q̃(W ), so the composition condition on [a, b] is satisfied for P and Q.
Hence, by Definition 4.1, P is [a, b]-definite.

We assume now that P has two non-equivalent [a, b]-indecomposable right factors
W1, W2, and show that the solution Q =W1 +W2 cannot be represented in the form
Q = Q̃(W ), where W is an [a, b]-right factor of P and Q̃ is a polynomial (cf. [30]).
First observe that W1 and W2 have different degrees, for otherwise equalities (3.3)
imply that W1 and W2 are equivalent. Thus, without loss of generality, we may
assume that deg W2 > deg W1 and so deg Q = deg W2, implying that if Q = Q̃(W ), then
deg W |deg W2. Therefore, using (3.3) again, we conclude that W2 =U (W ) for some
polynomial U . Furthermore, if deg W < deg W2, then we obtain a contradiction with the
assumption that W2 is an [a, b]-indecomposable right factor of P. On the other hand,
if deg W = deg W2, then as above we conclude that W and W2 are linear equivalent,
implying that W1 = Q −W2 is a polynomial in W2, in contradiction with the assumption
that deg W2 > deg W1. �

Corollaries 4.1–4.2 below were proved in [31]. Here we give another proof of these
results based on Theorem 4.2 and the second Ritt theorem. We believe that these ‘more
algebraic’ proofs clarify to some extent the structure of definite polynomials, which still
presents a lot of open questions (see [37]). We also extend a classification of non-definite
polynomials whose degree does not exceed nine, given in [31], up to degree eleven.

COROLLARY 4.1. Let p be a prime. Then each polynomial P of degree ps , s ≥ 1, is
[a, b]-definite for any a, b ∈ C, a 6= b.

Proof. Indeed, since imprimitivity systems of G P form a sublattice of L ps (see §3.1),
if W1, W2 are arbitrary right factors of P , then either W1 is a polynomial in W2 or
W2 is a polynomial in W1. Therefore, such P cannot have two non-equivalent [a, b]-
indecomposable right factors. �

COROLLARY 4.2. If at least one of the points a and b is not a critical point of a polynomial
P, then P is [a, b]-definite.

Assume that P is not [a, b]-definite and let W1, W2 be its nonlinear equivalent [a, b]-
indecomposable right factors. Then the second Ritt theorem implies that there exist
polynomials of degree one, µ1, µ2, and polynomials U , W such that either

P =U ◦ zrs Rn(zn) ◦W, W1 = µ1 ◦ zn
◦W, W2 = µ2 ◦ zs R(zn) ◦W, (4.1)

where R is a polynomial and GCD(s, n)= 1, or

P =U ◦ Tnm ◦W, W1 = µ1 ◦ Tn ◦W, W2 = µ2 ◦ Tm ◦W, (4.2)
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where Tn, Tm are the Chebyshev polynomials and GCD(n, m)= 1. Furthermore, since W1,
W2 are [a, b]-indecomposable and non-equivalent, the inequality W (a) 6=W (b) holds. In
particular, n > 1, since W1(a)=W1(b).

It is easy to see that if (4.1) holds, then the equalities

W1(̃a)=W1(̃b), W2(̃a)=W2(̃b),

where
W̃1 = zn, W̃2 = zs R(zn), ã =W (a), b̃ =W (b),

taking into account the equality GCD(s, n)= 1, imply that the number ãn
= b̃n is a root

of the polynomial R. It follows now from the first formula in (4.1) by the chain rule that
both a and b are critical points of P.

If (4.2) holds, then, taking into account the identity

Tl ◦
1
2

(
z +

1
z

)
=

1
2

(
z +

1
z

)
◦ zl (4.3)

and the equality GCD(m, n)= 1, it is easy to see that there exist α, β ∈ C such that

ã =
1
2

(
α +

1
α

)
, b̃ =

1
2

(
β +

1
β

)
, αn

= βn, αm
=

1
βm , (4.4)

where as above ã =W (a), b̃ =W (b). Furthermore, α2
6= 1. Indeed, otherwise the

equalities

ᾱn
= β̄n, ᾱm

=
1
β̄m
,

where ᾱ = α2, β̄ = β2, taking into account the equality GCD(m, n)= 1, imply that
β2
= 1. Since ã 6= b̃, this yields that either ã =−1, b̃ = 1 or ã = 1, b̃ =−1. On the other

hand, since GCD(m, n)= 1, without loss of generality we may assume that m is odd,
implying that Tm (̃a) 6= Tm (̃b) for such ã and b̃ since Tm(−1)=−1, Tm(1)= 1. Similarly,
β2
6= 1. Finally, observe that equalities (4.4) yield that αmn

=±1, βmn
=±1, implying

that
Tmn(α)=±1, Tmn(β)=±1. (4.5)

In order to finish the proof, observe that the equality Tn(cos φ)= cos nφ implies easily
that the polynomial Tn has exactly two critical values ±1 and that the only points in the
preimage T−1

n {±1} which are not critical points of Tn are the points ±1. Therefore, the
equalities (4.5), taking into account that α 6= ±1, β 6= ±1, imply that α and β are critical
points of Tmn and hence critical points of P by the chain rule.

Theorem 4.2 combined with the second Ritt theorem allows us, at least in principle, to
describe explicitly all the non-definite polynomials up to a given degree. In particular, the
following statement holds.

THEOREM 4.3. For given a 6= b, non-definite polynomials P ∈ P11 appear only in degrees
six and 10 and have, up to change P→ λ ◦ P, where λ is a polynomial of degree one, the
following form.
(1) P6 = T6 ◦ τ , where T6 is the Chebyshev polynomial of degree six and τ is a

polynomial of degree one transforming a, b into −
√

3
2 ,
√

3
2 .
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(2) P10 = z2 R2(z2) ◦ τ , where R(z)= z2
+ γ z + δ is an arbitrary quadratic

polynomial satisfying R(1)= 0, i.e. γ + δ =−1, and τ is a polynomial of degree
one transforming a, b into −1, 1.

Proof. First of all, observe that if in Ritt’s second theorem (§3.1 above) the degree of one
of polynomials satisfying (3.4) is two, then solutions (3.6) may be written in the form (3.5).
Indeed, for odd n the equality

Tn(z)= zEn(z2) (4.6)

holds for some polynomial En . Furthermore, T2 = θ ◦ z2, where θ = 2z − 1 and hence

zEn(z2) ◦ θ ◦ z2
= Tn ◦ T2 = T2 ◦ Tn = θ ◦ T 2

n = θ ◦ zE2
n(z) ◦ z2.

Since the last equality implies the equality

zEn(z2) ◦ θ = θ ◦ zE2
n(z),

we conclude that

Tn = θ ◦ zE2
n(z) ◦ θ

−1, T2n = θ ◦ z2 E2
n(z

2). (4.7)

Therefore, the equality
Tn ◦ T2 = T2 ◦ Tn

may be written in the form

(θ ◦ zE2
n(z) ◦ θ

−1) ◦ (θ ◦ z2)= (θ ◦ z2) ◦ zEn(z2). (4.8)

Now we are ready to prove the theorem.
Since each integer i , 2≤ i < 11, distinct from 6 or 10 is either a prime or a power

of a prime, it follows from Corollary 4.1 that P is [a, b]-definite unless deg P = 6 or
deg P = 10. It follows now from the second Ritt theorem and the remark above
that if deg P = 10, then P has the form given above. Similarly, if deg P = 6, then
P = z2 R2(z2) ◦ τ , where R is a polynomial satisfying R(1)= 0. However, since in
this case the degree of R equals one, up to change P→ λ ◦ P ◦ τ, we obtain a unique
polynomial P = T6. �

Let V, V1 ⊂ P be fixed linear spaces. Let us denote by NDV,V1 the set of polynomials
P ∈ V non-definite with respect to V1. In particular, for V = Pd , V1 = P , we denote the
corresponding set by NDd . If V1 is a line spanned by a fixed Q ∈ P , we write NDV,V1 as
NDV,Q .

PROPOSITION 4.1. For each V1 ⊂ P and V ⊂ Pd , we have NDV,V1 ⊂ NDd . The
dimension of NDd does not exceed [d/6] + 1.

Proof. The conclusion is immediate: any polynomial non-definite with respect to a smaller
subspace is non-definite with respect to a larger one. By Theorem 4.2, the set NDd consists
of all P ∈ Pd which have s ≥ 2 mutually [a, b]-prime right [a, b]-factors. Hence, NDd ⊂⋃

s≥2 DECd
s (a, b). By Proposition 3.3, we have dim NDd ≤ [d/6] + 1. This completes

the proof. �
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4.2. Codefinite polynomials. Let [a, b] and a subspace V ⊂ P[a,b] be given.

THEOREM 4.4. A polynomial Q is not V -codefinite if and only if there exists a polynomial
P ∈ V (necessarily non-definite) with a complete collection of [a, b]-indecomposable
right factors W1, . . . , Ws, s ≥ 2, such that:
(1) the polynomial Q can be represented as Q =

∑s
j=1 S j (W j );

(2) no one of W1, . . . , Ws is a right [a, b]-factor of Q.

Proof. By Definition 4.1, a polynomial Q is not V -codefinite if and only if there exists a
polynomial P ∈ V such that all the moments mk =

∫ b
a Pk(x)q(x) dx, k ≥ 0, vanish while

P and Q do not satisfy the composition condition. Clearly, if such P exists it cannot be
definite. Furthermore, by Theorem 4.1, the polynomial Q can be represented as a sum
Q =

∑s
j=1 S j (W j ). Finally, since P and Q do not satisfy the composition condition, no

one of W1, . . . , Ws can be an [a, b]-right factor of Q.
In the opposite direction, assume that P ∈ V as required exists. Since Q possesses a

representation Q =
∑s

j=1 S j (W j ), where W1, . . . , Ws are right [a, b]-factors of P, we
conclude (by linearity of the moments in Q) that all the moments mk , k ≥ 0, vanish.
Furthermore, since W1, . . . , Ws is a complete collection of right [a, b]-factors of P , the
second assumption implies that P and Q do not satisfy the composition condition. Hence,
Q is not V -codefinite. �

Definition 4.2. For V ⊂ P , we define the set SV,d ⊂ Pd as the set of polynomials Q ∈ Pd

which can be represented as Q =
∑s

j=1 S j (W j ), where W1, . . . , Ws are all [a, b]-
indecomposable right factors of a certain non-definite P ∈ V . The set SV is the union⋃

d SV,d .

By Theorem 4.4, in order to describe explicitly all V -codefinite polynomials up to
degree d, we have first to describe the set SV,d and then to describe those Q ∈ SV,d for
which no one of W1, . . . , Ws is a right [a, b]-factor of Q. Both these questions in their
general form turn out to be rather tricky, and we provide here only very partial results.

Let us stress that the role of Theorem 4.5 below and of the rest of the results in
this section is to describe in detail the set of non-composition solutions of the moment
equations. This will prepare an application, in §6 below, of the second set of the center
equations at infinity, according to Theorem 2.1: those provided by the vanishing of the
second Melnikov function. We expect that together the two sets of equations always imply
the composition condition (compare Conjecture 2 in §6 below).

To make formulas easier, without loss of generality we shall assume that [a, b]
coincides with [−

√
3

2 ,
√

3
2 ].

THEOREM 4.5. Let V = P
9,[−

√
3

2 ,
√

3
2 ]

. Then the set SV,d is a vector space consisting of all

polynomials Q ∈ Pd representable as Q = S1(T2)+ S2(T3) for some polynomials S1, S2.
Furthermore, the dimension SV,d is equal to [(d + 1)/2] + [(d + 1)/3] − [(d + 1)/6]. In
particular, this dimension does not exceed [ 23 d] + 1.

For d ≤ 4, the space SV,d coincides with Pd and, starting with d = 5, this space is
always a proper subset of Pd . We have SV,5 = P4 ⊂ P5 and SV,6 is the subspace in P6

consisting of all the polynomials Q of the form Q = Q1 + αT3 with Q1 even of degree
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at most six. We have SV,7 = SV,6, while the set SV,8 is the subspace in P8 consisting of
all the polynomials Q of the form Q = Q1 + αT3 with Q1 even of degree at most eight.
The set SV,9 is the subspace in P9 consisting of all the polynomials Q of the form Q =
Q1 + αT3 + βT 3

3 with Q1 even of degree at most eight.

Proof. By Theorem 4.3, the only non-definite polynomials in V = P
9,[−

√
3

2 ,
√

3
2 ]

are scalar

multiples of T6. Further, T6 = T2 ◦ T3 = T3 ◦ T2 has exactly two right [−
√

3
2 ,
√

3
2 ]-factors

T2 and T3. This proves the first claim of Theorem 4.5.
Next, observe that

C[Tn] ∩ C[Tm] = C[Tl ], (4.9)

where l = lcm(n, m). Indeed, if P is contained in C[Tn] ∩ C[Tm], then there exist
polynomials A, B such that

P = A ◦ Tn = B ◦ Tm

and, in order to show that there exists a polynomial U such that P =U ◦ Tl , one can use
the second Ritt theorem. However, such a proof is more difficult than it seems, since it
requires an analysis of the possibility provided by (3.5) (see e.g. [33, Lemma 4.1]). It is
more convenient to observe that identity (4.3) implies that the function

F = P ◦
1
2

(
z +

1
z

)
= A ◦

1
2

(
zn
+

1
zn

)
= B ◦

1
2

(
zm
+

1
zm

)
is invariant with respect to both the groups D2n and D2m , where D2s is the dihedral
group generated by the transformations z→ 1/z and z→ e2π i/s z. Therefore, F remains
invariant with respect to the group < D2n, D2m >= D2l generated by D2n and D2m ,
implying that there exists a rational function U such that

F =U ◦
1
2

(
zl
+

1
zl

)
.

Since

U ◦
1
2

(
zl
+

1
zl

)
=U ◦ Tl ◦

1
2

(
z +

1
z

)
,

we conclude that P =U ◦ Tl , and it is easy to see that U actually is a polynomial.
Denote by Ud,n the subspace of C[Tn] consisting of all polynomials of degree ≤ d. By

the remark above, we have Ud,n ∩Ud,m =Ud,l . This implies that

dim SV,d = dim Ud,2 ⊕Ud,3 − 2= dim Ud,2 + dim Ud,3 − dim Ud,6 − 2

=

[
d + 1

2

]
+

[
d + 1

3

]
−

[
d + 1

6

]
− 1≤

[
2
3

d
]
+ 1.

To get an explicit description of SV,d for d ≤ 9, we shall use the following simple
lemma, which is used also in §6. Consider polynomials T̂2(x)= 2x2

−
3
2 , T̂3(x)=

T3(x)= 4x3
− 3x and T̂6 = T̂2 ◦ T̂3. Our polynomials T̂ j , j = 2, 3, 6, differ from the

usual Chebyshev polynomials only in a constant term, chosen in such a way that T̂ j vanish

at the points −
√

3
2 ,
√

3
2 . In the representation,

Q = S1(T̂2)+ S2(T̂3), S1, S2 ∈ P. (4.10)
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The polynomial Q belongs to Pd , so it vanishes at the points −
√

3
2 ,
√

3
2 . Hence, we can

assume that both S1 and S2 do not have constant terms. Next we notice that all the even
polynomials Q in Pd , and only them, are representable as Q = S1(T̂2).

Let deg S1 = m, deg S2 = n.

LEMMA 4.1. Let Q ∈ Pd be represented via (4.10). Then the polynomials S1 and S2

in (4.10) can be chosen in such a way that S2 is odd and max (2m, 3n)≤ d.

Proof. It is enough to consider only odd polynomial S2. Indeed, it is immediate that
all the even polynomials, and only them, are representable as S1(T̂2). Since for l even
T̂ l

3 = x l(4x2
− 3)l is an even polynomial (and it is odd for l odd), all the even degrees in

S2 can be omitted.
Under this assumption, the odd degree n of S2 must satisfy 3n ≤ d . Indeed, otherwise

the odd degree 3n of S2(T̂3) would be larger than d , and the highest degree term in this
polynomial could not cancel with the terms of S1(T̂2). By the same reason, assuming that
S2 is odd, we conclude that 2m ≤ d . Indeed, otherwise the even degree 2m of S1(T̂2)

would be larger than d , and the highest degree term in this polynomial could not cancel
with the terms of S2(T̂2). �

Application of Lemma 4.1 completes the proof of Theorem 4.5. �

THEOREM 4.6. A polynomial of the form Q = S1(T2)+ S2(T3),where S1, S2 are non-zero
polynomials, has T2 (respectively T3) as its right factor if and only if S2 is a polynomial in
T2 (respectively S1 is a polynomial in T3).

Proof. Indeed, assume, say, that S1(T2)+ S2(T3)= R(T2) for some polynomial R. Then,
by (4.9) there exists a polynomial F such that

S2 ◦ T3 = F ◦ T6 = F ◦ T2 ◦ T3,

implying that S2 = F ◦ T2. �

COROLLARY 4.3. Let V = P
9,[−

√
3

2 ,
√

3
2 ]

. A polynomial Q ∈ P
8,[−

√
3

2 ,
√

3
2 ]

is not

V -codefinite if and only if it can be represented in the form

Q = R + αT3, α ∈ C, (4.11)

where α 6= 0, and R ∈ P
8,[−

√
3

2 ,
√

3
2 ]

is an even polynomial distinct from βT6 + γ, β, γ ∈ C.

Proof. By the above results, if P ∈ P8 is not codefinite, it can be represented in the form
Q = S1(T2)+ S2(T3), where deg S1 ≤ 4 and S1 is not a linear polynomial in T3, while
deg S2 ≤ 2 and S2 is not a linear polynomial in T2. Since S2 can be represented in the form
δT2 + αz + κ, where δ, α, κ ∈ C, we conclude that such Q can be represented in the form

Q = S̃1(T2)+ αT3, (4.12)

where deg S̃1 ≤ 4. Furthermore, α 6= 0, since otherwise Q is a polynomial in T2, and S̃1 is
not a linear polynomial in T3, since otherwise Q is a polynomial in T3. Therefore, since
C[T2] = C[z2

] and T3 ∈ P8, the polynomial P admits the representation (4.11).
In the other direction, it follows from (4.11) that (4.12) holds, where α 6= 0 and

S̃1 6= βT3 + γ, β, γ ∈ C, implying that Q is not codefinite. �
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4.3. Polynomials with a special structure. Let R= {r1, r2, . . . } be a set of prime
numbers, finite or infinite. Define U (R) as a subset of P consisting of polynomials
P =

∑N
i=0 ai x i such that for any non-zero coefficient ai , the degree i is either coprime

with each r j ∈R or it is a power of some r j ∈R. Similarly, define U1(R) as a subset
of P consisting of polynomials Q such that for any non-zero coefficient ai of Q, all
prime factors of i are contained in R. In particular, if R coincides with the set of all
prime numbers, then U (R) consists of polynomials in P whose degrees with non-zero
coefficients are powers of primes, while U1(R)= P.

THEOREM 4.7. Let R= {r1, r2, . . . } be fixed. Then, for any a 6= b, each polynomial
P ∈U (R) is [a, b]-definite and, in particular, it is [a, b]-definite with respect to U1(R),
and each Q ∈U1(R) is [a, b]-codefinite with respect to U (R).

Proof. We show that vanishing of all the moments mk =
∫ b

a Pk(x)q(x) dx for P ∈U (R)
and Q ∈U1(R) implies the composition condition. By the construction, the degree of
any Q ∈U1(R) is the product of certain prime numbers in R. By [31, Corollary 4.3],
vanishing of the moments implies that the degrees of P and Q cannot be mutually prime.
Hence, deg P is divisible by one of r j . But then by the definition this degree must be
a power of r j . Finally, it was shown in [31] (see also §3.2.1 above) that polynomials P
with deg P a power of a prime number are definite. Hence, vanishing of the moments mk

implies the composition condition for P, Q on [a, b]. �

4.4. The moment and the composition sets. Using the information on definite and
codefinite polynomials provided above, we now can describe more accurately the
interrelation between the moment and the composition sets.

Let V, V1 ⊂ P be fixed linear spaces. As above, NDV,V1 is the set of polynomials
P ∈ V non-definite with respect to V1.

THEOREM 4.8. For each Q ∈ V1, we have MSV,Q = COSV,Q ∪ N, where N is contained
in NDV,V1 ⊂ ND. In particular, for V ⊂ Pd and any Q, the dimension of N is at most
[d/6] + 1.

Proof. If P ∈MSV,Q but P is not in COSV,Q , then P is not definite with respect to V1 and
hence it belongs to NDV,V1 , which is always a subset of ND. If V ⊂ Pd , then P ∈ NDd

and the bound on the dimension follows from Proposition 4.1. �

Example [10]. Let [a, b] = [−
√

3
2 ,
√

3
2 ]. Put Q = (T2 + T3) and consider V = P6. Then

the moment set MSV,Q contains exactly two components: the composition component
COSV,Q = {P = R(T2 + T3)}, with R any polynomial of degree two, and the non-
composition component T = {P = αT6, α ∈ C}. Here T , in fact, coincides with NDV,Q .

Our description of codefinite polynomials in §4.2 produces the following result on the
moment and composition sets.

COROLLARY 4.4. Let V ⊂ P and let V1 ⊂ Pd be such that V1 ∩ SV,d = {0}, in the
notation of Definition 4.2. Then, for each Q ∈ V1, we have NDV,V1 = ∅ and MSV,Q =

COSV,Q .
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Proof. By Theorem 4.4 and via Definition 4.2, each Q ∈ V1, Q 6= 0 is codefinite with
respect to V . Consequently, each P ∈ V is definite with respect to such Q. Application of
Theorem 4.8 completes the proof. �

In the situation of §4.3, we get the following result.

COROLLARY 4.5. For a fixed set R of prime numbers, let V =U (R), V1 =U1(R), in
the notation of §4.3. Then, for each Q ∈ V1, we have MSV,Q = COSV,Q .

Proof. The result follows directly from Theorems 4.8 and 4.7. �

5. Center set near infinity
Let a polynomial Q and a linear subspace V ⊂ Pd be fixed. In this section we analyze the
structure of the center set CSV,Q at and near the infinite hyperplane HV, as compared to
the moment and composition sets MSV,Q and COSV,Q . By Proposition 2.1, we have at
infinity COS⊂ CS⊂MS.

An important fact is that for each definite P0 ∈ CS, there is an entire projective
neighborhood U of P0 in PV where CS and COS coincide.

THEOREM 5.1. Let P0 ∈ CSV,Q be a definite polynomial. Then:
(1) in fact, P0 ∈ COSV,Q;
(2) there exists a projective neighborhood U of P0 in PV such that CSV,Q ∩U =

COSV,Q ∩U;
(3) CSV,Q ∩U is a linear space defined by vanishing of the linear parts of the center

equations. In particular, CS is regular in U and its local ideal is generated by the
center equations.

Proof. From the inclusion CS⊂MS, we get P0 ∈MSV,Q . Since the polynomial P0 is
definite by the assumptions, moments vanishing for this polynomial implies composition,
so in fact P0 ∈ COSV,Q .

In homogeneous coordinates (P, ν) in PV near P0, put P = P0 + P1, P1 ∈ V . By [10,
Proposition 7.2], the only non-zero linear terms in the expansions of the homogenized
center equations around the point (0, 0) in variables P1, ν are given by the following linear
functionals in P1:

Lk(P1)=−(k − 3)
∫ b

a
Pk−4

0 (x)q(x)P1(x) dx, k = 4, 5, . . . . (5.1)

Denote by L ⊂ V the subspace defined by the linear equations Lk(P1)= 0, k = 4, 5, . . . .
Let us show first that L ⊂ COSV,Q . Consider a certain polynomial P1 ∈ L . Since
P0 is definite, vanishing of Lk(P1) implies the composition condition for P0(x) and
S(x)=

∫ x
a P1(τ )q(τ ) dτ . Since, being definite, P0 has only one [a, b]-prime right

composition [a, b]-factor W , we conclude that S = S̃(W ). By the same reason, from P0 ∈

COSV,Q it follows that Q = P̃(W ). Now [10, Lemma 7.3] implies that P1 = P̃1(W ), i.e.
P1 ∈ COSV,Q and hence L ⊂ COSV,Q .

It follows that all the center equations vanish on L , which is the zero set of their linear
parts. Now we are in a situation of [10, Lemma 7.4] (Nakayama lemma in commutative
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algebra see for example [24, Ch. 4, Lemma 3.4]). The conclusion is that CS= L = COS
in a neighborhood of P0, and the local ideal of this set is generated by the center equations.
This completes the proof of Theorem 5.1. �

6. Main results
Let a 6= b be fixed. Below we denote by T̃ j the transformed Chebyshev polynomials
T̃ j = T j ◦ µ, µ being a linear polynomial transforming the couple (a, b) to the couple

(−
√

3
2 ,
√

3
2 ).

Let linear subspaces V, V1 ⊂ P[a,b] and a polynomial Q ∈ V1 be fixed. The affine
center set CSV,Q always contains the composition set COSV,Q . In this section we provide
an upper bound for the dimensions of affine non-composition components in CS. As
above, NDV,V1 ⊂ ND denotes the set of V1 non-definite polynomials in V . For each affine
algebraic set A ⊂ V , let Ā denote the intersection of A with the infinite hyperplane HV.

THEOREM 6.1. For each irreducible non-composition component A of the affine
central set CSV,Q , we have Ā ⊂ CSV,Q ∩ ND⊂MSV,Q ∩ ND. Consequently, dim A ≤
dim(MSV,Q ∩ ND)+ 1. In particular, for any polynomial Q and V ⊂ Pd , the dimension
of A cannot exceed [d/6] + 2.

Proof. We always have Ā ⊂ CS⊂MS.Now, if P0 ∈ Ā, then P0 cannot be definite. Indeed,
otherwise there would exist a neighborhood U of P0 provided by Theorem 5.1, where
A ∩U ⊂ COS ∩U . Since A is irreducible, this would imply that A ⊂ COS, which
contradicts the assumption that A is a non-composition component of CS. Thus,
Ā ⊂MSV,p ∩ ND. Now, since the infinite hyperplane HV has codimension one in
the projective space PV, for each A we have dim A ≤ dim Ā + 1. Application of
Proposition 4.1 completes the proof. �

Notice that the dimension of the composition components of CS may be of order d/2,
while by Theorem 6.1 the dimension of the non-composition components is of order at
most d/6. To our best knowledge, this is the first general bound of this form for the
polynomial Abel equation.

COROLLARY 6.1. [10] Let V = P5. Then, for any Q, the center set CSV,Q consists of a
composition set with possibly a finite number of additional points.

Proof. By Theorem 4.3, there are no non-definite polynomials in V = P5. So, the set
MSV,Q ∩ ND is empty and its dimension is −1. �

COROLLARY 6.2. Let V = P9. Then, for any Q, the center set CSV,Q consists of a
composition set with possibly a finite number of additional curves.

Proof. By Theorem 4.3, the only non-definite polynomials in V = P9 are scalar multiples
of T̃6. So, the set MSV,Q ∩ ND consists at most of one point and its dimension is at
most 0. �

COROLLARY 6.3. Let V = P11. Then, for any Q, the center set CSV,Q consists of a
composition set with possibly a finite number of additional two-dimensional components.
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Proof. Theorem 4.3 describes non-definite polynomials in V = P11. We see that the
set MSV,Q ∩ ND consists at most of a finite number of points and a one-dimensional
component, and its dimension is at most 1. �

Notice that the bounds of Corollaries 6.1–6.3 are more accurate than the general bound
of Theorem 4.3.

Recall that by Definition 4.2 the set SV consists of all Q which can be represented as
Q =

∑s
j=1 S j (W j ), where W1, . . . , Ws are all [a, b]-indecomposable right factors of a

certain P ∈ V .

THEOREM 6.2. Let V ⊂ P and let Q ∈ P\SV . Then the center set CSV,Q consists of a
composition set with possibly a finite number of additional points. In particular, this is
true for V = P9 and any Q not representable as Q = S1(T̃2)+ S2(T̃3).

Proof. This result follows directly from Theorem 4.3 and Corollary 4.4. The case V = P9

is covered by Theorem 4.5. However, since Theorem 6.2 is one of the central results
of this paper, we give its short independent proof. We show that the moment set MSV,Q

does not contain non-definite polynomials. Indeed, for each non-definite P ∈ V , vanishing
of the moments mk =

∫ b
a Pk(x)q(x) dx implies that Q ∈ SV , by Definition 4.2. But, by

our assumptions, Q ∈ P\SV . Therefore, P is not in MSV,Q . Application of Theorem 6.1
completes the proof. �

We expect that the result of Theorem 6.2 can be significantly extended. In particular,
we expect that the following statement is true.

Statement 6.1. Let V ⊂ P. Assume that either Q ∈ P\SV or Q ∈ SV , and it is not V -
codefinite. Then the center set CSV,Q consists of a composition set with possibly a finite
number of additional points.

Closely related to Statement 6.1 is the following result.

CONJECTURE 2. For polynomials P, Q, vanishing of all the moments mk(P, Q) and of
all the second Melnikov coefficients D j (P, Q) (see Theorem 2.1) implies the composition
condition.

THEOREM 6.3. Conjecture 2 implies Statement 6.1.

Proof. Assume, as in Statement 6.1, that either Q ∈ P\SV or Q ∈ SV , and it is not
V -codefinite. The first case is treated in Theorem 6.2. In the second case we still show
that the center set at infinity CSV,Q does not contain non-definite polynomials. Assume, in
contradiction, that P ∈ CSV,Q is non-definite, and let W1, . . . , Ws, s ≥ 2, be all the [a, b]-
indecomposable right factors of P . According to Theorem 2.1, P satisfies the equations
mk(P, Q)= 0 and D j (P, Q)= 0. By the first set of these equations, Q =

∑s
j=1 S j (W j )

and, by the second set and by Conjecture 2, we conclude that one of W j is a right factor
of Q. Now, according to Theorem 4.4, Q is V -codefinite, in contradiction with the
assumptions. This completes the proof. �

Our next result confirms Conjecture 2 and hence Statement 6.1 for deg P, deg Q ≤ 9.
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THEOREM 6.4.
(1) Conjecture 2 is valid for deg P, deg Q ≤ 9, i.e. vanishing of all the moments

mk(P, Q) and of four initial second Melnikov coefficients D j (P, Q) implies the
composition condition for such P, Q.

(2) Consequently, for V = P9 and for any Q of degree up to nine not of the form
Q = S1(T̃2)+ S2(T̃3), or of this form, but such that neither T̃2 nor T̃3 are the right
composition factors of Q, the center set CSV,Q consists of a composition set with
possibly a finite number of additional points.

Proof. By Theorem 6.3, the first part of Theorem 6.4 implies its second part. So, let
polynomials P, Q with deg P, deg Q ≤ 9 be given. If P 6= αT̃6, it is definite and hence
already vanishing of all the moments mk(P, Q) implies the composition condition for
P, Q. Consider now the case P = T̃6. Here vanishing of mk(P, Q) implies that Q has a
form Q = S1(T̃2)+ S2(T̃3) for some polynomials S2 and S3. By Lemma 4.1, we conclude
that S1, S2 can be written in the form S1(T )=

∑4
i=1 ci T i , S2(T )=

∑2
i=1 αi T 2i−1. Now

we use the second set of the center equations at infinity: D j (P, Q)= 0. �

PROPOSITION 6.1. The first four equations at infinity, D j (P, Q)= 0, given in
Theorem 2.1 can be written as

D1(P, Q)=
∫ b

a
Q2 p = 0,

D2(P, Q)=
∫ b

a
Q2 Pp = 0,

D3(P, Q)= 2
∫ b

a
Q2 P2 p +

∫ b

a
Q(t)P(t)p(t) dt

∫ t

a
Q(τ )p(τ ) dτ = 0,

D4(P, Q)=
∫ b

a
Q2 P3 p +

∫ b

a
Q(t)P2(t)p(t) dt

∫ t

a
Q(τ )p(τ ) dτ = 0.

(6.1)

Proof. The proof is based on rather lengthy computations. We shall use the following
result from [10].

THEOREM 6.5. [10, Theorem 2.2] Any iterated integral Iα with m0 + m1 + m2

appearances of p and exactly two appearances of q after m0 and m1 appearances of p,
respectively, can be transformed via integration by parts to the sum of the iterated integrals
of the following form:

Iα =
m1∑
i=0

(−1)m0+m1−i

m0!m2!i !(m1 − i)!

∫ b

a
Pm0+i (x)q(x) dx

∫ x

a
Pm1+m2−i (t)q(t) dt. (6.2)

Below we present calculations of the Melnikov coefficients at infinity D1(P, Q) and
D3(P, Q). The coefficients D2 and D4 are obtained in a similar way. Let us recall that

P(a)= P(b)= Q(a)= Q(b)= 0, (6.3)

while from Theorem 2.1 for k = 4, 6, 8, 10 it follows that∫ b

a
P i q = 0, i = 1, . . . , 4. (6.4)
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Case 1. Let k = 5. Then the corresponding center equation at infinity is given by
D1 =

∑
nα Iα = 0, where the sum runs over all the indices α = (α1, . . . , αs) with exactly

two appearances of 1, and with
∑s

j=1 α j = k − 1= 4. Hence, we have exactly one
appearance of 2, and s = 3.

Now, for α1 = (1, 1, 2), we have nα1 =−12, m0 = m1 = 0, m2 = 1 and hence

Iα1 =

∫ b

a
q(x1) dx1

∫ x1

a
q(x2) dx2

∫ x2

a
p(x3) dx3

=

[
Q(x1) ·

∫ x1

a
q
∫ x2

a
p
] ∣∣∣∣b

x1=a
−

∫ b

a
Qq dx1

∫ x1

a
p

= −
1
2

[
Q2(x1) ·

∫ x1

a
p
] ∣∣∣∣b

x1=a
+

1
2

∫ b

a
Q2 p =

1
2

∫ b

a
Q2 p.

For α2 = (1, 2, 1), we have nα2 =−8, m0 = 0, m1 = 1, m2 = 0 and

Iα2 =

∫ b

a
q
∫ x1

a
p
∫ x2

a
q =

[
Q(x1) ·

∫ x1

a
p
∫ x2

a
q
] ∣∣∣∣b

x1=a
−

∫ b

a
Qp

∫ x1

a
q

= −

∫ b

a
Q(x1)p(x1)(Q(x1)− Q(a)) dx1 =−

∫ b

a
Q2 p.

For α3 = (2, 1, 1), we have nα3 =−6, m0 = 1, m1 = 0, m2 = 0 and

Iα3 =

∫ b

a
p
∫ x1

a
q
∫ x2

a
q =

∫ b

a
p
∫ x1

a
Qq

=
1
2

∫ b

a
(Q2(x1)− Q2(a))p(x1) dx1 =

1
2

∫ b

a
Q2 p.

Then D1 =
∑3

i=1 nαi Iαi = (−12 · 1
2 + 8− 6 · 1

2 )
∫ b

a Q2 p =
∫ b

a Q2 p.

Case 2. For k = 7, 9, 11, we shall use expressions (6.2)–(6.4), which will allow us
to present somewhat lengthy calculations in a more systematic way. For k = 7, the
calculations easily provide the answer D2 =

∫ b
a Q2 Pp = 0, so we concentrate on the case

k = 9. The center equation at infinity is given by∑
nα Iα = 0 (6.5)

with
∑s

j=1 α j = k − 1= 8, and with exactly two appearances of 1. Hence, we have
exactly three appearances of 2, and s = 5.

For α1 = (1, 1, 2, 2, 2), we have nα1 =−8 · 7 · 5 · 3, m0 = m1 = 0, m2 = 3. Then,
by (6.2), we have Iα1 =

1
3!

∫ b
a q(x) dx

∫ x
a P3q. Integrating by parts once more, we get

Iα1 =
1
4

∫ b
a Q2 P2 p.

In a similar way, expressions (6.2)–(6.4) and some additional integrations by part allow
us to express all Iα through J1 =

∫ b
a Q2 P2 p and J2 =

∫ b
a Q Pp

∫ x
a Qp.

For α2 = (1, 2, 1, 2, 2): nα2 =−8 · 6 · 5 · 3, m0 = 0, m1 = 2, m2 = 2 and

Iα2 =−
1
2

∫ b

a
q
∫ x

a
P3q +

1
2

∫ b

a
Pq

∫ x

a
P2q = · · · = −

1
2

J1 − J2.
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For α3 = (1, 2, 2, 1, 2): nα3 =−8 · 6 · 4 · 3, m0 = 0, m1 = 2, m2 = 1 and

Iα3 =
1
2

∫ b

a
q
∫ x

a
P3q −

∫ b

a
Pq

∫ x

a
P2q +

1
2

∫ b

a
P2q

∫ x

a
Pq = · · · = 3J2.

For α4 = (1, 2, 2, 2, 1): nα4 =−8 · 6 · 4 · 2, m0 = 0, m1 = 3, m2 = 0 and

Iα4 = −
1
6

∫ b

a
q
∫ x

a
P3q +

1
2

∫ b

a
Pq

∫ x

a
P2q −

1
2

∫ b

a
P2q

∫ x

a
Pq

+
1
6

∫ b

a
P3q

∫ x

a
q = · · · = −2J2.

In the same way, for the remaining six transpositions α5 = (2, 1, 1, 2, 2), α6 = (2, 1, 2,
1, 2), α7 = (2, 1, 2, 2, 1), α8 = (2, 2, 1, 1, 2), α9 = (2, 2, 1, 2, 1), α10 = (2, 2, 2, 1, 1),
we obtain the following values of (nα, Iα):(

−7 · 6 · 5 · 3,− 1
4 J1 + J2

)
,

(
−7 · 6 · 4 · 3, J1 − 4J2

)
,

(
−7 · 6 · 4 · 2, 3J2

)
,(

−7 · 5 · 4 · 3,− 1
4 J1 + J2

)
,

(
−7 · 5 · 4 · 2,− 1

2 J1 − J2
)
,

(
−7 · 5 · 3 · 2, 1

4 J1
)
.

Substituting these expressions for mα and Iα into (6.5), we finally obtain −2(2J1 + J2),
so, after omitting a non-zero coefficient −2, we get D3 = 2J1 + J2 = 2

∫
Q2 P2 p +∫

Q Pp
∫

Qp.

The last equation in (6.1), for k = 11, is obtained in a completely similar way. �

The following results describe the application of these four equations to the specific
combinations of Chebyshev polynomials representing Q. To simplify the numeric
coefficients, we assume here that [a, b] = [0, 1] and so T̃2(x)= x(x − 1), T̃3(x)=
x(x − 1)(2x − 1). We also notice that T̃6 = T̃ 2

3 = T̃ 2
2 + 4T̃ 3

2 .

In all the calculations below, P = T̃6 is fixed, while Q = S1(T̃2)+ S2(T̃3)with S1(T )=∑4
i=1 ci T i , S2(T )=

∑2
i=1 αi T 2i−1 is variable. We substitute these P and Q into the

equations (6.1) of Proposition 6.1 and get a system of algebraic equations with respect to
the complex unknowns c1, c2, c3, c4, α1, α2.

It is convenient to introduce the expressions Lk =
∫ 1

0 S1(T̃2)T̃ k
3 dT̃6, which are linear

forms in c1, c2, c3, c4. Using these expressions, we can rewrite equations (6.1) as

α1L1 + α2L3 = 0,

α1L3 + α2L5 = 0,

16
15α1L5 +

36
35 L7 = 0,

25
21α1L7 +

49
45 L9 = 0.

(6.6)
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PROPOSITION 6.2. The expressions Lk, k = 1, 3, 5, 7, 9, can be written explicitly as the
following linear forms in the coefficients c1, c2, c3, c4 of the polynomial S1(T ):

L1 =−
8

13
·
(5!)2

11!

(
−13c1 + 4c2 − c3 +

4
17

c4

)
,

L3 =−
3

14 · 9
·
(8!)2

17!

(
−

38
3

c1 + 4c2 − c3 +
16
69

c4

)
,

L5 =−
4

33 · 25
·
(11!)2

23!

(
−

25
2

c1 + 4c2 − c3 +
20
87

c4

)
,

L7 =−
10

11 · 13 · 31
·
(14!)2

29!

(
−

62
5

c1 + 4c2 − c3 +
8
35

c4

)
,

L9 =−
9

13 · 17 · 37
·
(17!)2

35!

(
−

37
3

c1 + 4c2 − c3 +
28
123

c4

)
.

Proof. This is obtained by straightforward computation of Lk using the identities
T̃6 = T̃ 2

3 = T̃ 2
2 + 4T̃ 3

2 , dT̃6 = 2T̃3dT̃3 = 2(T̃2 + 6T̃ 2
2 )dT̃2 and

∫ 1
0 T̃ n

2 (x) dx = (−1)n ·
(n!)2/(2n + 1)!. �

Now we come back to system (6.6). Let us start with the special case where α2 = 0.

PROPOSITION 6.3. Let P = T̃6, Q = S1(T̃2)+ α1T̃3, with S1(T )=
∑4

i=1 ci T i . If the
first three equations (6.1) of Proposition 6.1 are satisfied, then either Q = S1(T̃2) or
Q = c2T̃6 + α1T̃3. In each of these cases Q has either T̃2 or T̃3 as a right composition
factor.

Proof. Substitution to the equations (6.6) gives the following system of equations on the
coefficients α1, c1, c2, c3, c4:

α1
(
− 13c1 + 4c2 − c3 +

4
17 c4

)
= 0,

α1
(
−

38
3 c1 + 4c2 − c3 +

16
69 c4

)
= 0,

α1
(
−

25
2 c1 + 4c2 − c3 +

20
87 c4

)
= 0.

(6.7)

The result follows immediately from this system. �

Let us consider now the remaining case, where α2 6= 0.

PROPOSITION 6.4. Let P = T̃6, Q = S1(T̃2)+ α1T̃3 + α2T̃ 3
3 , with S1(T )=

∑4
i=1 ci T i

and α2 6= 0. If all the four equations (6.1) of Proposition 6.1 are satisfied, then Q =
c2T̃6 + α1T̃3 + α2T̃ 3

3 and hence Q has T̃3 as a right composition factor.

Proof. Substitution to the equations (6.6) gives a system of equations on the coefficients
α1, α2, c1, c2, c3, c4, which, putting K := α1/α2, can be brought to the following form:

(−4199K − 19)c1 +
(
323K + 3

2

)
(4c2 − c3)+

(
76K + 8

23

)
c4 = 0,

(−874K − 5)c1 +
(
69K + 2

5

)
(4c2 − c3)+

(
16K + 8

87

)
c4 = 0,

(−40 600K − 252)c1 +
(
3248K + 630

31

)
(4c2 − c3)+

( 2240
3 K + 144

31

)
c4 = 0,

(−7750K − 49)c1 +
(
625K + 147

37

)
(4c2 − c3)+

( 1000
7 K + 1372

1517

)
c4 = 0.

(6.8)
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System (6.8) contains four equations with respect to four variables K , c1, c4 and
t = 4c2 − c3. It presents a system of four linear equations with respect to c1, c4, t , but
K enters the coefficients. We shall show that for each K this system has only the
trivial solution c1 = c4 = t = 0. Indeed, existence of a non-trivial solution would imply
simultaneous vanishing of, for example, the determinants

11(K )= 21 280
3 K 3

+
2736
31 K 2

+
1368
4495 K + 24

103 385

and
12(K )= 76 000K 3

+
101 998 240

104 673 K 2
+

3 934 112
1 081 621 K + 3528

1 081 621 ,

formed by the coefficients of system (6.3) in the rows 1, 2, 3 and 1, 3, 4, respectively.
However, the resultant res(11(K ), 12(K )) of the polynomials 11(K ), 12(K ) in K is
approximately equal to 21.514 474 38, so it is non-zero and hence these polynomials do
not have common roots. (The final calculation of11(K ), 12(K ) and of their resultant has
been performed with the help of the ‘MATLAB’ system).

We conclude that for any α1, α2 with α2 6= 0, and for K = α1/α2, system (6.3) implies
c1 = c4 = 0, c3 = 4c2. Consequently, any polynomial Q satisfying this system has a form

Q = c2T̃ 2
2 + 4c2T̃ 3

2 + α1T̃3 + α2T̃ 3
3 = c2T̃6 + α1T̃3 + α2T̃ 3

3 .

In particular, Q has T̃3 as its right composition factor. This completes the proof of
Theorem 6.4: vanishing of the moments and of the initial four Melnikov coefficients
implies composition for P, Q up to degree nine. �

Finally, we consider center sets in the subspaces V =UR, as defined in §4.3.

THEOREM 6.6. Let a subset R= {r1, r2, . . . } of prime numbers be fixed. Put V =U (R),
as defined in §4.3 above. Then, for any a 6= b and for each fixed polynomial Q ∈U1(R),
the center set CSV,Q of the Abel equation (1.1) inside the space V consists of a composition
set with possibly a finite number of additional points.

Proof. This is a direct consequence of Corollary 4.5 and Theorem 6.1. �

The results of this section cover all the results of Theorems 1.2–1.6 stated in the
Introduction.

The methods developed in this paper work not only in the setting of the center equations
at infinity. They can be applied also to the study of the local structure of the affine center
set, extending the approach of [7]. Here we use the ‘second degree’ Nakayama lemma in
order to conclude that the center set (locally near the origin) coincides with the composition
set, defined by the moments and the second Melnikov function. We plan to present these
results separately.

Our recent paper [9] applies the results of the present paper on definite polynomials to
the parametric versions of the center-focus problem for the polynomial Abel equation.

Acknowledgements. This research was supported by the ISF, Grant Nos. 639/09 and
779/13, and by the Minerva Foundation. The authors would like to thank the referee for
detailed suggestions, significantly improving the presentation.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 12 Nov 2014 IP address: 132.76.50.5

30 M. Briskin et al

REFERENCES

[1] A. Alvarez, J. L. Bravo and C. Christopher. On the trigonometric moment problem. Ergod. Th. & Dynam.
Sys. 34(1) (2014), 1–20.

[2] M. A. M. Alwash. On the composition conjectures. Electron. J. Differential Equations 2003(69) (2003),
1–4.

[3] M. A. M. Alwash. The composition conjecture for Abel equation. Expo. Math. 27 (2009), 241–250.
[4] M. A. M. Alwash. Polynomial differential equations with piecewise linear coefficients. Differ. Equ. Dyn.

Syst. 19(3) (2011), 267–281.
[5] M. A. M. Alwash. Composition conditions for two-dimensional polynomial systems. Differ. Equ. Appl. 5(1)

(2013), 1–12.
[6] M. A. M. Alwash and N. G. Lloyd. Non-autonomous equations related to polynomial two-dimensional

systems. Proc. Roy. Soc. Edinburgh 105A (1987), 129–152.
[7] M. Blinov, M. Briskin and Y. Yomdin. Local center conditions for the Abel equation and cyclicity of its

zero solution. Complex Analysis and Dynamical Systems II (Contemporary Mathematics, 382). American
Mathematical Society, Providence, RI, 2005, pp. 65–82.

[8] M. Briskin, J.-P. Francoise and Y. Yomdin. Center conditions, compositions of polynomials and moments
on algebraic curve. Ergod. Th. & Dynam. Sys. 19(5) (1999), 1201–1220.

[9] M. Briskin, F. Pakovich and Y. Yomdin. Parametric center-focus problem for Abel equation. Qual. Theory
Dyn. Syst. to appear.

[10] M. Briskin, N. Roytvarf and Y. Yomdin. Center conditions at infinity for Abel differential equations. Ann.
of Math. (2) 172(1) (2010), 437–483.

[11] A. Brudnyi. On the center problem for ordinary differential equations. Amer. J. Math. 128(2) (2006),
419–451.

[12] A. Brudnyi. Center problem for ODEs with coefficients generating the group of rectangular paths. C. R.
Math. Acad. Sci. Soc. R. Can. 31(2) (2009), 33–44.

[13] A. Brudnyi and Y. Yomdin. Tree composition condition and moments vanishing. Nonlinearity 23(7) (2010),
1651–1673.

[14] C. Christopher and Ch. Li. Limit Cycles of Differential Equations (Advanced Courses in Mathematics. CRM
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[21] J. Giné, M. Grau and J. Llibre. Universal centers and composition conditions. Proc. Lond. Math. Soc. (3)

106(3) (2013), 481–507.
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