Cyclicity of Nilpotent Centers

Douglas S. Shafer

April 21, 2015

Collaborator and Computer Algebra Tools

This research was done in collaboration with

Isaac A. García Lleida, Spain

- Focus quantities computed using:
 MATHEMATICA 8.0—A General Purpose Computer Algebra System
- Computations with ideals done using:
 SINGULAR 3-1-6—A Computer Algebra System for Polynomial Computations

Polynomial Systems Contrasts

Non-degenerate

$$\dot{x} = -y + R(x, y)$$

$$\dot{y} = x + S(x, y)$$

- monodromic
- a center iff there is a suitable first integral
- the Lyapunov quantities are polynomials in the coefficients

Nilpotent

$$\dot{x} = y + R(x, y)$$

 $\dot{y} = S(x, y)$

- conditionally monodromic
- a center can exist without a formal or analytic first integral
- the Lyapunov quantities are conditionally polynomials in the coefficients

Andreev's Monodromy Theorem (1955, 1958)

$$\mathscr{X}: \begin{array}{c} \dot{x} = y + R(x, y) \\ \dot{y} = S(x, y) \end{array}$$

Let y = F(X) be the unique solution of y + R(x, y) = 0 and

$$f(x) = S(x, F(x)) = ax^{\alpha} + \cdots$$

$$\varphi(x) = \text{div } \mathcal{X}(x, F(x)) = bx^{\beta} + \cdots$$

The origin is monodromic if and only if

- lacktriangleq lpha = 2n 1 is an odd integer
- *a* < 0
- $\varphi \equiv 0$ or $\beta \geqslant n$ or $\beta = n 1$ and $b^2 + 4an < 0$.

Andreev Number

The Andreev number for the system

$$\mathscr{X}: \quad \dot{x} = y + R(x, y) \\ \dot{y} = S(x, y)$$

with

$$f(x) = S(x, F(x)) = ax^{2n-1} + \cdots, \quad a < 0$$

$$\varphi(x) = \text{div } \mathcal{X}(x, F(x)) = bx^{\beta} + \cdots$$

for which

$$\varphi \equiv 0$$
 or $\beta \geqslant n$ or $\beta = n - 1$ and $b^2 + 4an < 0$

is the number n.

Standard Form

Lyaunov's Generalized Trigonometric Functions

For $n \in \mathbb{N}$ let

$$x = \operatorname{Cs} \theta$$
 $y = \operatorname{Sn} \theta$

denote the unique solution of

$$\frac{dx}{d\theta} = -y x(0) = 1$$

$$\frac{dy}{d\theta} = x^{2n-1} y(0) = 0$$

 $Cs \theta$ and $Sn \theta$ are periodic of least period

$$T_n = 2\sqrt{\frac{\pi}{n}} \frac{\Gamma(\frac{1}{2n})}{\Gamma(\frac{n+1}{2n})}$$

and satisfy

$$\operatorname{Cs}^{2n}\theta + n\operatorname{Sn}^2\theta = 1.$$

Generalized Polar Coordinates

For an analytic monodromic system with Andreev number n,

$$\dot{x} = -y + y\widehat{R}(x, y)$$

$$\dot{y} = \widehat{f}(x) + y\widehat{\varphi}(x) + y^{2}\widehat{S}(x, y)$$

define

$$x = r \operatorname{Cs} \theta, \quad y = r^n \operatorname{Sn} \theta$$

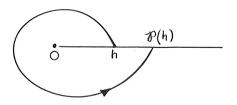
to obtain

$$\frac{dr}{d\theta} = \mathscr{F}[n](r,\theta)$$

for which $\mathscr{F}[n](r,\theta)$ is defined and analytic on a neighborhood of r=0, is T_n -periodic, and satisfies $\mathscr{F}[n](0,\theta)\equiv 0$.

Generalized Lyapunov Quantities v_j

Let $\Psi(r; h)$ solve $\frac{dr}{d\theta} = \mathscr{F}[n](r, \theta), \ \Psi(0; h) = h$.



$$\mathscr{P}(h) = \Psi(T_n; h)$$
 $d(h) = \mathscr{P}(h) - h = \sum_{j \geqslant 1} v_j h^j$ $v_1 = \Psi_1(T_n) - 1, \quad v_j = \Psi_j(T_n), \ j \geqslant 2$

Polynomial v_j

Given a monodromic polynomial family parametrized by the admissible coefficients, λ ,

$$\dot{x} = -y + y \,\widehat{R}(x, y)$$

$$\dot{y} = \widehat{f}(x) + y \,\widehat{\varphi}(x) + y^2 \,\widehat{S}(x, y)$$

with

$$\widehat{f}(x) = a_{2n-1}x^{2n-1} + \cdots, \quad \widehat{\varphi}(x) = b_{\beta}x^{\beta} + \cdots,$$

the Poincaré-Lyapunov quantities v_i are polynomials in the parameters if and only if

- 1. a_{2n-1} is a fixed (positive) constant, not a parameter, which without loss of generality can be assumed to be 1; and
- 2. if $\widehat{\varphi}(x) \not\equiv 0$ and $\beta = n-1$ then b_{β} is a fixed constant, not a parameter.

Polynomial v_j: Proof

$$\dot{x} = -y + y\widehat{R}(x,y) \qquad \dot{u} = v + v\widehat{R}(u,v)$$

$$\dot{y} = \widehat{f}(x) + y\widehat{\varphi}(x) + \cdots \qquad \underbrace{\overset{u=\xi x}{v=-\xi y}} \qquad \dot{u} = f(u) + v\varphi(u) + \cdots$$

$$\widehat{\varphi} = b_{n-1}x^{\beta} + \cdots \qquad \varphi = bx^{n-1} + \cdots$$

$$\frac{dr}{d\theta} = \frac{H_1r + H_2r^2 + \cdots}{J_0 + J_1r + \cdots} = \frac{H_1}{J_0}r + \frac{H_2J_0 - H_1J_1}{J_0^2}r^2 + \cdots$$

where

- each H_i and J_i is a polynomial in λ , Cs θ , and Sn θ , and
- $J_0 = (a_{2n-1} \operatorname{Cs}^{2n} \theta + n \operatorname{Sn}^2 \theta) + b_{n-1} \operatorname{Cs}^n \theta \operatorname{Sn} \theta$ = $(-a\xi^{2n-2} \operatorname{Cs}^{2n} \theta + n \operatorname{Sn}^2 \theta) + b\xi^{n-1} \operatorname{Cs}^n \theta \operatorname{Sn} \theta$

Bautin Ideal

Analytic

Polynomial

$$\dot{x} = y + R(x, y, \lambda)$$

 $\dot{y} = S(x, y, \lambda)$

$$\dot{x} = y + yR(x, y)$$

$$\dot{y} = S(x, y)$$

parametrized by admissible coefficients

$$d(h) = \mathscr{P}(h) - h = \sum_{j \geqslant 1} v_j(\lambda) h^j$$

$$\mathscr{B} = \langle \mathit{v}_1(\lambda), \mathit{v}_2(\lambda), \cdots
angle \in \mathscr{G}_{\lambda^*}$$

$$\mathscr{B} = \langle v_1(\lambda), v_2(\lambda), \cdots \rangle \in \mathscr{G}_{\lambda^*}$$
 $\mathscr{B} = \langle v_1(\lambda), v_2(\lambda), \cdots \rangle \in \mathbb{R}[\lambda]$

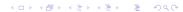
Minimal Basis

The *minimal basis* of a finitely generated ideal I with respect to an *ordered* basis $B = \{f_1, f_2, f_3, \dots\}$ is the basis M_I defined by the following procedure:

- (a) initially set $M_I = \{f_p\}$, where f_p is the first non-zero element of B;
- (b) sequentially check successive elements f_j , starting with j=p+1, adjoining f_j to M_I if and only if $f_j\notin\langle M_I\rangle$, the ideal generated by M_I .

Example

For
$$I = \langle x^3, x^2, x \rangle$$
 in $\mathbb{R}[x]$, $M_I = \{x, x^2, x^3\}$



Small Zeros of Analytic Functions (Bautin)

Technical Lemma

If $\{f_{j_1},\ldots,f_{j_s}\}$ is the minimal basis for the ideal $\langle f_j:j\in\mathbb{N}\rangle$ with generators ordered by the indices, then the analytic function

$$Z(h,\lambda) = \sum f_j(\lambda)h^j$$

can be validly expressed as

$$Z(h,\lambda)=f_{j_1}(\lambda)[1+\psi_1(h,\lambda)]h^{j_1}+\cdots+f_{j_s}(\lambda)[1+\psi_s(h,\lambda)]h^{j_s}.$$

Zeros Theorem

Suppose $\psi_j(0,\lambda^*)=0$ for all j. Then there exist δ and ϵ such that for each λ satisfying $|\lambda-\lambda^*|<\delta$ the equation $Z(h,\lambda)=0$ has at most s-1 isolated solutions in the interval $0< h<\epsilon$.

Cyclicity Bound Theorem

$$d(h) = \mathscr{P}(h) - h = \sum_{j \geqslant 1} v_j h^j$$

If the minimal basis of the Bautin ideal $\mathscr{B}=\langle v_1,v_2,\cdots \rangle$ is

$$M_{\mathscr{B}}=\{v_{j_1},v_{j_2},\cdots,v_{j_s}\}$$

then the cyclicty of a center at the origin of any member of the family is at most s-1.

Problems:

- 1. The generalized Lyapunov quantities are difficult to compute.
- 2. Even if we know a collection $\{v_{j_1}, \ldots, v_{v_s}\}$ whose vanishing at λ^* implies that all v_j vanish, we do not necessarily know a basis of \mathcal{B} .

Odd Degree Homogeneous Nonlinearities

Henceforth restrict to

$$\dot{x} = y + P_{2m+1}(x, y)$$

 $\dot{y} = Q_{2m+1}(x, y)$

Andreev's Monodromy Theorem:

$$(0,0)$$
 is monodromic iff $Q_{2m+1}(1,0) < 0$

Make the change

$$x = u - p(-q)^{-1/2}v$$

$$y = (-q)^{1/2}v$$

$$t = (-q)^{-1/2}\tau$$

where

$$p = P_{2m+1}(1,0)$$
 and $q = Q_{2m+1}(1,0)$.

Odd Degree Homogeneous Nonlinearities in Standard Form

$$\dot{x} = y + yP(x, y)$$

 $\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$

for which

$$f(x) = -x^{2m+1}$$

$$\varphi(x) = \begin{cases} bx^{2m} & \text{if } b \neq 0 \\ 0 & \text{if } b = 0 \end{cases}$$

Andreev number n = m + 1

 $v_j(\lambda) \in \mathbb{R}[\lambda]$, λ the admissible coefficients

Focus Quantities (Amel'kin, Lukashevich, Sadovskii, 1982)

For

$$\mathcal{X}: \dot{x} = y + yP(x,y)$$
$$\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$

there exists a formal series

$$W(x,y) = (m+1)y^2 + \sum_{k \geqslant 1} W_{2(km+1)}(x,y),$$

 W_j homogeneous of degree j

such that

- $\mathscr{X}W = x^{2(2m+1)} \sum_{k \ge 1} g_k x^{2km} = \sum_{k \ge 1} g_k x^{K(k)}$
- $g_k \in \mathbb{R}[\lambda]$
- (0,0) is a center for system λ^* iff $g_k(\lambda^*)=0$ for all k

The Focus Quantities and the Generalized Lyapunov Quantities

Generalized Lyapunov quantities v_j :

control stability and cyclicity recursively computed via integrations

Focus quantities g_j :

pick out centers recursively computed via algebra

Theorem

Let $I_k = \langle g_1, g_2, \dots, g_k \rangle$. There exist positive constants w_k that are independent of λ such that

- $v_1 = \cdots = v_m = 0$ and $v_{m+1} = w_1 g_1$
- for $k \in \mathbb{N}$,
 - $v_{(2k-1)m+j} \in I_k \text{ for } j = 2, \dots, 2m$
 - $v_{(2k+1)m+1} w_{k+1}g_{k+1} \in I_k$

The Lyapunov and Focus Quantities

Truncate the formal series for W at sufficiently large $N=2(\kappa m+1)$.

Relate ΔW and Δh in one turn about the origin.

$$\begin{split} & \Delta W(h;\lambda) \\ &= \int_0^{\tau(h)} \frac{d}{dt} \Big[W(x(t;h,\lambda),y(t;h,\lambda) \Big] dt \\ &= \int_0^{\tau(h)} \sum_{k=1}^{\kappa} g_k(\lambda) x^{K(k)}(t;h,\lambda) dt \\ &= \int_0^{T_{m+1}} \sum_{k=1}^{\kappa} g_k(\lambda) x^{K(k)}(t(\theta);h,\lambda) h^{-m} \Big[1 + \sum_{i \ge 1} u_i(\theta;\lambda) h^j \Big] d\theta \end{split}$$

Apply

$$x(\theta(t);h,\lambda) = r(\theta;h,\lambda)\operatorname{Cs}\theta = \left[\sum_{i=1}\Psi_i(\theta;\lambda)h^i\right]\operatorname{Cs}\theta = \left[h+\cdots\right]\operatorname{Cs}\theta.$$

$$\Delta W(h; \lambda)$$

$$= h^{-m} \sum_{k=1}^{\kappa} \left[\int_{0}^{T_{m+1}} x^{K(k)}(t(\theta); h, \lambda) \left[1 + \sum_{j \geq 1} u_{j}(\theta; \lambda) h^{j} \right] d\theta \right] g_{k}(\lambda)$$

$$= h^{-m} \sum_{k=1}^{\kappa} \left[\int_{0}^{T} \operatorname{Cs}^{K(k)} \theta \left[h^{K(k)} + \sum_{j \geq 2} \widehat{u}_{j}(\theta; \lambda) h^{K(k)+j} \right] d\theta \right] g_{k}(\lambda)$$

$$= h^{-m} \sum_{k=1}^{\kappa} \left[w_{k} h^{K(k)} + g_{k,1}(\lambda) h^{K(k)+1} + g_{k,2}(\lambda) h^{K(k)+2} + \cdots \right] g_{k}(\lambda)$$

 $w_k = \int_0^T \mathsf{Cs}^{K(k)} \theta \, d\theta > 0$, independent of λ

$$\Delta W(h; \lambda)$$

$$=h^{-m}\sum_{k=1}^{\kappa}\Big[w_{k}h^{K(k)}+g_{k,1}(\lambda)h^{K(k)+1}+g_{k,2}(\lambda)h^{K(k)+2}+\cdots\Big]g_{k}(\lambda)$$

and

$$\Delta W = \zeta(h + \Delta h) - \zeta(h)$$

for the invertible function

$$\zeta(h) = W(h, 0) = h^{2m+1} + \cdots$$

Apply Taylor's Theorem to the inverse to obtain

$$\Delta h = \frac{1}{h^{2m+1}} [c_0 + \cdots] \Delta W - \frac{1}{\widetilde{h}^{4m+3}} [d_0 + \cdots] \Delta W^2$$

for some
$$\widetilde{h} = O(h)$$

$$\Delta h = w_1 g_1 h^{m+1} + g_1 \left[\widetilde{g}_{1,1} h^{m+2} + \widetilde{g}_{1,2} h^{m+3} + \cdots \right]$$

$$+ w_2 g_2 h^{3m+1} + g_2 \left[\widetilde{g}_{2,1} h^{3m+2} + \widetilde{g}_{2,2} h^{3m+3} + \cdots \right]$$

$$+ w_3 g_3 h^{5m+1} + g_3 \left[\widetilde{g}_{3,1} h^{5m+2} + \widetilde{g}_{3,2} h^{5m+3} + \cdots \right]$$

$$+ \cdots$$

$$+ w_{\kappa} g_{\kappa} \right) h^{(2\kappa-1)m+1}$$

$$+ g_{\kappa} \left[\widetilde{g}_{\kappa,1} h^{(2\kappa-1)m+2} + \widetilde{g}_{\kappa,2} h^{(2\kappa-1)m+3} + \cdots \right].$$

and

$$\Delta h = d(h; \lambda) = v_1 h + v_2 h^2 + v_3 h^3 + \cdots$$

The Bautin Ideal and Its Minimal Bases

Thus

$$\mathscr{B} \stackrel{\mathsf{def}}{=} \langle v_k : k \in \mathbb{N} \rangle = \langle v_{(2k-1)m+1} : k \in \mathbb{N} \rangle = \langle g_k : k \in \mathbb{N} \rangle$$

and the minimal bases

$$\{v_{k_1},\ldots,v_{k_r}\}$$
 and $\{g_{j_1},\ldots,g_{j_s}\}$

satisfy

$$r = s$$
 and $k_p = (2j_p - 1)m + 1$.

Summary: The Bautin Ideal and Its Minimal Bases

For

$$\mathscr{X}: \dot{x} = y + yP(x,y)$$
$$\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$

and the formal series

$$W(x,y) = (m+1)y^2 + \sum_{k \ge 1} W_{2(km+1)}(x,y)$$

such that
$$\mathscr{X}W = x^{2(2m+1)} \sum_{k\geqslant 1} g_k x^{2km} = \sum_{k\geqslant 1} g_k x^{K(k)}$$

the Bautin ideal is

$$\mathscr{B} \stackrel{\mathsf{def}}{=} \langle v_k : k \in \mathbb{N} \rangle = \langle v_{(2k-1)m+1} : k \in \mathbb{N} \rangle = \langle g_k : k \in \mathbb{N} \rangle$$

and the minimal bases

$$\{v_{k_1}, \dots, v_{k_r}\}$$
 and $\{g_{j_1}, \dots, g_{j_s}\}$

satisfy

$$r=s$$
 and $k_p=(2j_p-1)m+1$.

The Minimal Bases and Cyclicity of Centers

For

$$\mathscr{X}: \dot{x} = y + yP(x,y)$$
$$\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$

if the minimal bases of the Bautin ideal ${\mathscr B}$ are

$$\{v_{k_1},\ldots,v_{k_r}\}$$
 and $\{g_{j_1},\ldots,g_{j_s}\}$

then the cyclicity of a center at the origin of member of the family is at most r-1=s-1.

Notation: Ideals and Affine Varieties

Let \mathbb{F} be a field.

The affine variety determined by $f_1, \ldots, f_s \in \mathbb{F}[x_1, \ldots, x_p]$:

$$V = \mathbf{V}(f_1, \dots, f_s) := \{x : f_j(x) = 0 \text{ for } j = 1, \dots, s\} \subset \mathbb{F}^p.$$

For $I = \langle f_1, \dots, f_s \rangle$, we also write

$$V = \mathbf{V}(I)$$

The ideal determined by a variety V:

$$\mathbf{I}(V) := \{ f : f(a) = 0 \text{ for all } a \in V \} \subset \mathbb{F}[x_1, \dots, x_p]$$

The Center Variety

For

$$\mathscr{X}: \dot{x} = y + yP(x,y)$$
$$\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$

and the formal series

$$W(x,y) = (m+1)y^2 + \sum_{k\geqslant 1} W_{2(km+1)}(x,y)$$

such that
$$\mathscr{X}W = x^{2(2m+1)} \sum_{k\geqslant 1} g_k x^{2km} = \sum_{k\geqslant 1} g_k x^{K(k)}$$

the parameter values corresponding to a center is the variety

$$V_{\mathscr{C}} = \mathbf{V}(\mathscr{B}) = \mathbf{V}(v_k : k \in \mathbb{N}) = \mathbf{V}(g_k : k \in \mathbb{N}) \subset \mathbb{R}^{4m+2}$$

The Computational Challenge

Knowing the solution of the center problem for the family

$$\mathscr{X}: \dot{x} = y + yP(x,y)$$
$$\dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$

means, at the least, knowing something like

$$V_{\mathscr{C}} \stackrel{\mathsf{def}}{=} \mathbf{V}(v_1, v_2, \dots) = \mathbf{V}(v_{j_1}, \dots, v_{j_r})$$

or

$$V_{\mathscr{C}} = \mathbf{V}(g_1, g_2, \dots) = \mathbf{V}(g_{k_1}, \dots, g_{k_s}).$$

We need the minimal basis of ${\mathscr B}$ but it is possible that

$$\langle g_{k_1}, \ldots, g_{k_s} \rangle \subsetneq \langle g_1, g_2, \ldots \rangle$$

Finding the Minimal Basis of ${\mathscr B}$

Knowing

$$V_{\mathscr{C}} \stackrel{\mathsf{def}}{=} \mathbf{V}(g_1, g_2, \dots) = \mathbf{V}(g_{k_1}, \dots, g_{k_s})$$
 (1)

for the family

$$\mathscr{X}: \dot{x} = y + yP(x, y) \dot{y} = -x^{2m+1} + bx^{2m}y + \dots + cy^{2m+1}$$
 (2)

- view (2) as a family on \mathbb{C}^2 with coefficients in \mathbb{C}
- W and the focus quantities g_k exist as before
- prove by non-geometric methods that

$$g_{k_1}(\lambda^*) = \cdots = g_{k_s}(\lambda^*) = 0$$
 yields W such that $\mathscr{X}W = 0$

- obtaining (1) in $\mathbb{C}^{2(2m+1)}$
- and use the Strong Nullstellensatz to finish when $\langle g_{k_1}, \dots, g_{k_s} \rangle$ is radical.

Homogeneous Cubic Nonlinearities

$$\dot{x} = y + Ax^{2}y + Bxy^{2} + Cy^{3}$$

$$\dot{y} = -x^{3} + Px^{2}y + Kxy^{2} + Ly^{3}$$
(3)

Andreev, 1953:

System (3) has a center at the origin if and only if

$$h_1 = P$$
 $h_2 = B + 3L$ $h_3 = (A + K)L$

all vanish.

Theorem

A sharp global upper bound for the cyclicity of centers at the origin for systems in family (3) is two.

Homogeneous Cubic Nonlinearities: The Focus Quantities

$$\dot{x} = y + Ax^2y + Bxy^2 + Cy^3$$

$$\dot{y} = -x^3 + Px^2y + Kxy^2 + Ly^3$$

Focus quantities:

$$g_1 = P$$

 $g_2 = 3B + 9L - 3AP - 4KP$
 $g_3 = 10$ -term cubic

Reduced Focus quantities:

$$g_1 = h_1 = P$$

 $\widetilde{g}_2 = h_2 = B + 3L$
 $\widetilde{g}_3 = h_3 = (A + K)L$

$$V_{\mathscr{C}} = \mathbf{V}(\mathscr{B}) = \mathbf{V}(h_1, h_2, h_3) = \mathbf{V}(g_1, g_2, g_3) \stackrel{\mathsf{nota.}}{=} \mathbf{V}(\mathscr{B}_3)$$

Finding the Center Variety in the Complex Setting

On \mathbb{R}^2 : $V_{\mathscr{C}} = \mathbf{V}(P, B + 3L, (A + K)L)$.

Using SINGULAR compute the primary decomposition

$$\langle h_1, h_2, h_3 \rangle = J_1 \cap J_2 = \langle P, A + K, B + 3L \rangle \cap \langle P, B, L \rangle$$

- $\lambda^* \in \mathbf{V}(J_1)$ implies the system is Hamiltonian with Hamiltonian W of the desired form
- $\lambda^* \in \mathbf{V}(J_2)$ implies existence of invariance under $(x, y, t) \to (-x, y, -t)$
 - this suggests: there is a first integral containing no odd power of x, which can be proved by induction; or
 - quote a theorem of Chavarriga, Giacomini, Giné, and Llibre (2003) to this effect

On
$$\mathbb{C}^2$$
: $V_{\mathscr{C}} = \mathbf{V}(P, B + 3L, (A + K)L)$.

The Minimal Basis of ${\mathscr B}$ and an Upper Bound

A computation yields $\sqrt{\langle g_1,g_2,g_3\rangle}=\langle g_1,g_2,g_3\rangle.$

Using the Strong Nullstellensatz (valid over \mathbb{C}):

$$\mathscr{B}\subset\sqrt{\mathscr{B}}=\textbf{I}(\textbf{V}(\mathscr{B}))=\textbf{I}(\textbf{V}(\mathscr{B}_3))=\sqrt{\mathscr{B}_3}=\mathscr{B}_3\subset\mathscr{B}$$

hence

$$M_{\mathscr{B}}=\{g_1,g_2,g_3\}$$

so by the Cyclicity Bound Theorem the cyclicity of any center is at most two.

The Global Upper Bound Is Sharp I

$$M_{\mathscr{B}} = \{g_1, g_2, g_3\} \text{ implies } M_{\mathscr{B}} = \{v_2, v_4, v_6\}$$

hence

$$d(h,\lambda) = v_2(\lambda)[1 + \psi_1(h,\lambda)]h^2 + v_4(\lambda)[1 + \psi_2(h,\lambda)]h^4 + v_6(\lambda)[1 + \psi_3(h,\lambda)]h^6.$$

hence

$$d(h,\lambda) = g_1(\lambda)[1 + \widetilde{\psi}_1(h,\lambda)]h^2 + g_2(\lambda)[1 + \widetilde{\psi}_2(h,\lambda)]h^4 + g_3(\lambda)[1 + \widetilde{\psi}_3(h,\lambda)]h^6.$$

The Global Upper Bound Is Sharp II

$$\begin{split} d(h,\lambda) &= g_1(\lambda)[1+\widetilde{\psi}_1(h,\lambda)]h^2 \\ &+ g_2(\lambda)[1+\widetilde{\psi}_2(h,\lambda)]h^4 + g_3(\lambda)[1+\widetilde{\psi}_3(h,\lambda)]h^6. \end{split}$$

$$g_1 = P$$

 $g_2 = 3B + 9L - 3AP - 4KP$
 $g_3 = -60AB - 66BK - 120AL - 138KL + 30A^2P - 45CP$
 $+ 61AKP + 23K^2P + 25BP^2 + 50LP^2$

Independently adjust the g_j to produce two small cycles.

Remark. Romanovski (1986) and Andreev, Sadovskii, Tsikalyuk (2003): two cycles can be made to bifurcate from a third order focus.

Homogeneous Quintic Nonlinearities

$$\dot{x} = y + Ax^4y + Bx^3y^2 + Cx^2y^3 + Dxy^4 + Ey^5 \dot{y} = -x^5 + Qx^4y + Kx^3y^2 + Lx^2y^3 + Mxy^4 + Ny^5.$$
 (4)

Sadovskii, 1968:

System (4) has a center at the origin if and only if

- either B, D, Q, L, and N all vanish
- or Q, 2A + K, B + L, C + 2M, and D + 5N all vanish.

That is, the center variety is

$$V_{\mathscr{C}} = \mathbf{V}(B, D, L, N, Q) \cup \mathbf{V}(Q, 2A + K, B + L, C + 2M, D + 5N)$$

Finding the Center Variety in the Complex Setting

On
$$\mathbb{R}^2$$
: $V_{\mathscr{C}} = \mathbf{V}(J_1) \cup \mathbf{V}(J_2) = \mathbf{V}(J_1 \cap J_2)$, where $J_1 = \langle B, D, Q, L, N \rangle$ $J_2 = \langle Q, 2A + K, B + L, C + 2M, D + 5N \rangle$

- $\lambda^* \in \mathbf{V}(J_1)$ implies existence of invariance under $(x, y, t) \to (-x, y, -t)$
- $\lambda^* \in \mathbf{V}(J_2)$ implies the system is Hamiltonian with Hamiltonian W of the desired form

On
$$\mathbb{C}^2$$
: $V_{\mathscr{C}} = \mathbf{V}(J_1) \cup \mathbf{V}(J_2)$.

Homogeneous Quintic Nonlinearities: The Focus Quantities

$$\dot{x} = y + Ax^4y + Bx^3y^2 + Cx^2y^3 + Dxy^4 + Ey^5$$

$$\dot{y} = -x^5 + Qx^4y + Kx^3y^2 + Lx^2y^3 + Mxy^4 + Ny^5.$$

Focus quantities:

$$g_1 = Q$$

 $g_2 = 10B + 10L - 10AQ - 7KQ$
 $g_3 = 13$ -term cubic
:

Reduced Focus quantities:

$$g_1 = Q$$
 $\widetilde{g}_2 = B + L$
 $\widetilde{g}_3 = 3D + 4AL + 2KL + 15N$

Using SINGULAR compute the prime decomposition to obtain

$$\sqrt{\mathscr{B}_6} = J_1 \cap J_2$$

hence

$$V_{\mathscr{C}} = \mathbf{V}(\mathscr{B}) = \mathbf{V}(J_1) \cup \mathbf{V}(J_2) = \mathbf{V}(J_1 \cap J_2) = \mathbf{V}(\mathscr{B}_6)$$

Houston, we have a problem

$$V_{\mathscr{C}} = \mathbf{V}(\mathscr{B}) = \mathbf{V}(\sqrt{\mathscr{B}_6}) = \mathbf{V}(\mathscr{B}_6)$$

but a computation shows that

$$\sqrt{\mathscr{B}_6} \supseteq \mathscr{B}_6$$

• we cannot conclude that $\mathscr{B} = \mathscr{B}_6$:

$$\mathscr{B} \subset \sqrt{\mathscr{B}} = \text{I}(\text{V}(\mathscr{B})) = \text{I}(\text{V}(\mathscr{B}_6)) = \sqrt{\mathscr{B}_6} \supsetneqq \mathscr{B}_6$$

• we do not know that the obvious minimal basis $\{g_1, \ldots, g_6\}$ of \mathcal{B}_6 is even a basis of \mathcal{B}

A Second Cyclicity Bound Theorem

Suppose

- $\{g_{j_1}, \dots, g_{j_s}\}$ is the minimal basis of the ideal $I = \langle g_{j_1}, \dots, g_{j_s} \rangle$ that it generates
- $\mathbf{V}_{\mathscr{C}} = \mathbf{V}(I)$
- $I = R \cap N = (primes) \cap (primaries)$

Then for the system corresponding to any $\lambda^* \in V_{\mathscr{C}} \setminus \mathbf{V}(N)$, the cyclicity of the center at the origin is at most s-1.

(An adaptation to this setting of a result of Ferčec, Levandovskyy, Romanovski, Shafer, 2015/6.)

Quintics: An Upper Bound On a Subset of $V_{\mathscr{C}}$

Let R_3 denote the prime ideal

$$R_3 = \langle B, D, Q, L, N, \ 2ACK + CK^2 - 4A^2M + K^2M + C^2 + 4CM + 4M^2 \rangle.$$

Then for any system in the quintic family corresponding to a parameter value λ lying in $V_{\mathscr{C}} \setminus \mathbf{V}(R_3)$ the cyclicity of the center at the origin is at most five.

Proof.

$$\mathscr{B}_6 = (J_1 \cap J_2) \cap (J_3 \cap J_4) = (\mathsf{primes}) \cap (\mathsf{primaries})$$

$$\sqrt{J_3} = R_3 \subset R_4 = \sqrt{J_4}$$

$$\mathbf{V}(N) = \mathbf{V}(\sqrt{N}) = \mathbf{V}(\sqrt{J_3} \cap \sqrt{J_4}) = \mathbf{V}(R_3 \cap R_4) = \mathbf{V}(R_3)$$

Restatement and Global Sharpness Result

The cyclicity of a center at (0,0) of any element of the family

$$\begin{split} \dot{x} &= y + Ax^4y + Bx^3y^2 + Cx^2y^3 + Dxy^4 + Ey^5 \\ \dot{y} &= -x^5 + Qx^4y + Kx^3y^2 + Lx^2y^3 + Mxy^4 + Ny^5, \end{split}$$

except those of the form

$$\dot{x} = y + Ax^4y + Cx^2y^3 + Ey^5$$

 $\dot{y} = -x^5 + Kx^3y^2 + Mxy^4$

satisfying $2ACK + CK^2 - 4A^2M + K^2M + C^2 + 4CM + 4M^2 = 0$, is at most five.

In each irreducible component $\mathbf{V}(J_1)$ and $\mathbf{V}(J_2)$ of $V_{\mathscr{C}}$ there are points from which five limit cycles can be made to bifurcate.

In Closing

for quintics:

- $g_j \in \mathcal{B}_6$ for $j \leqslant 11$ making it likely that $\mathcal{B} = \mathcal{B}_6$ so we conjecture that a global upper bound on cyclicity of quintic centers is five
- by imposing a relation among coefficients the ideal \mathcal{B}_6 can become radical in the polynomial ring in the remaining coefficients
- in particular, this is so if any one of B, D, Q, L, or N is fixed, and the cyclicity is bounded above by five

in general:

the ideas and methods described in this lecture have been further extended to larger families by Isaac García.