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The program for quadratic vector fields

To prove the existence of a finite bound H(X ) for
any compact family X of vector fields on S2, it is
sufficient to prove that any limit periodic set of
X has a finite cyclicity inside the family.
To apply this idea to the analytic family equivalent
to the family of quadratic vector fields, Dumortier,
Rousseau and myself have, in 1994, established a
list of all the possible limit periodic sets that
have to be considered.
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Quadratic limit periodic sets

In this paper of 1994 we have presented the list of
limit periodic sets, ordered by complexity, starting
with the simpler ones :
Bounded hyperbolic graphics

and finishing with the more degenerate ones :
Graphics including non isolated singularities.
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Any non trivial limit periodic set is a graphic, non
degenerate or not.
The classification of possible graphics uses the type
of singularities contained in the limit periodic set :
they may be hyperbolic, elementary, nilpotent,
in family.
Moreover the graphic may contains points or arcs at
infinity (the more common case). It may be of
finite codimension type or of center type. Finally
it may contain non isolated singularities : in this
case we have a slow-fast unfolding.
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Present state of the program

Most of the cases have been now
resolved.
The hyperbolic graphics were already solved in
1994, when they are of finite codimension and were
solved by Mourtada, Gavrilov, Zoladek in the center
cases. Graphics of finite codimension through a
nilpopent point were systematically studied by
Rousseau and Zhu. Some degenerate graphics were
solved by Fiedelers, Dumortier, Rousseau.

Then its remains to solve the more
degenerate cases, essentially of
center type.
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Nilpotent singular points of codimension 3

We will consider graphics through a nilpotent point at
infinity :

Figure: The different topological types of nilpotent points

A simplification : As the nilpotent singular point is located at
infinity, the circle at infinity is invariant inside the quadratic family.
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Graphics considered in this talk
They are graphics containing a nilpotent
singular point at infinity and of center type.
We have already some of them in a previous article :
the graphics of pp-type surrounding a center.
Now the graphic is of hh-type surrounding a
center and the nilpotent point is at infinity.

Figure: The graphics (I1
14), (I1

6b), (H3
13) and (DI2b).
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Main results

(1) The boundary limit periodic sets
in the graphics (I1

6b), (H3
13) and

(DI2b) have a finite cyclicity.
(2) The graphic (I1

14) has a finite
cyclicity.
A boundary limit periodic set is a secondary limit
periodic set (obtained by blow up) containing an arc
in the boundary of blow-up disk (see figure).
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Normal form at a nilpotent point

A generic unfolding depending on a multi-parameter
λ = (µ1, µ2, µ3, µ) ∼ 0 ∈ Rk+3, has the form

ẋ = y+a(λ)x2+µ2

ẏ = µ1+µ3y+x4h1(x, ε)+y(x+ηx2+x3h2(x, λ))+y2Q

where h1(x, λ) = O(|λ|). Moreover,
h1, h2, Q = Q(x, y, λ) are C∞ functions, and Q can
be chosen of arbitrarily high order in λ. We have
that a(0) 6= 1

2 .
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Blowing up
First, we make the change of parameters

(µ1, µ2, µ3) = (ν3µ̄1, ν
2µ̄2, νµ̄3).

Next, we perform the blow-up transformation

(x, y, ν) = (rx̄, r2ȳ, rρ),

with r > 0 and (x̄, ȳ, ρ) ∈ S2.
The blown-up vector field X̄A is defined on a
3-dimensional space with boundary the critical
locus {rρ = 0}. It is tangent to the foliation
defined by {ν = rρ = Cst}. It depends on the
parameter A = (a− a0, M̄ , µ) ∼ 0, where
M̄ = (µ̄1, µ̄2, µ̄3).
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The critical locus

The critical locus {rρ = 0} contains two strata :
S1 × R+ is the blown-up space for X0 (for λ = 0) ;
Dµ̄ = {x̄2 + ȳ2 + ρ2 = 1 | ρ ≥ 0}, for any µ̄ ∈ S2.

P
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P
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P3

2

4

Figure: Saddle and Elliptic cases
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Secondary limit periodic sets

Sxhh1 Sxhh2 Sxhh3 Sxhh4

Sxhh5 Sxhh6 Sxhh7 Sxhh8

Sxhh9 Sxhh10

Robert Roussarie FINITE CYCLICITY OF SOME CENTER GRAPHICS



Strategy to obtain the finite cyclicity

The initial graphic Γ is replaced by a whole
family of secondary limit periodic sets in the
blown-up space. For instance, in the case Sxhh1 this family
begins with the boundary limit periodic set and finishes with a
limit periodic set through a saddle on the critical locus.
The graphic Γ has a finite cyclicity if any
secondary limit periodic set has a finite
cyclicity.
We prove that the boundary limit periodic set has
always a finite cyclicity. We finally prove that any
secondary limit periodic set of Γ = (I1

14) has a
finite cyclicity.
We begin with the boundary limit set of (I1

14),(I6b),(DI2b).
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The boundary limit periodic set

D4 D3

P3P4

T

S = R <1

Y4 Y3

W4 W3

Figure: The boundary graphic through P3 and P4 and the four sections
Σi and Πi, i = 3, 4, in the normalizing coordinates.

We have to study the zeros of the displacement map :

V = D4 ◦ S − T ◦D3.
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The 3-dimensional saddles Pi

Near the points Pi, the vector field X̄A is equivalent
to : 

u̇ = u,

v̇ = −v,
ẏ = −σy +O(|(u, v, y)|2),

where the eigenvalue σ depends on the parameter b.
We write σ0 = σ(b0). We verify that ν = uv is a
first integral.
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Normal form at the saddles Pi
To compute the Dulac maps we use a normal
coordinate Y where the last line of the above
differential equation takes the form :

If σ0 6∈ Q : Ẏ = −(σ + ϕA(ν))Y ;
If σ0 = p

q :
Ẏ = −(σ+ϕA(ν))Y + ΦA(ν, upY q)Y + vpηA(ν)
.

y → Y can be taken of class Ck for any k.
ϕA,ΦA, ηA : polynomials of degree K(k) >> k with
smooth coefficient in A.
ΦA(ν, 0) ≡ 0 and ηA ≡ 0 if σ0 6∈ N.
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Expression of the Dulac maps Di

We introduce σ̄ = σ̄(σ, ν) = σ + ϕA(ν) and
α = α(σ, ν) = σ̄ − σ0.
We consider the Dulac map from the section {Ȳ = Y0},
parametrized by (r, ρ) to a section {r = r0} parameterized by
(Ȳ , ν). It has the form (r, ρ) 7→ (DA(r, ρ), ν), with its
Ȳ -component, (DA(r, ρ), given by :

1 If σ0 6∈ Q :
DA(r, ρ) =

(
r

r0

)σ̄
Y0.

2 If σ0 = p
q
∈ Q with (p, q) = 1 when σ0 6∈ N :

DA(r, ρ) = ηA(ν)ρp
(
r

r0

)σ̄
ω
(
r

r0
, α
)

+
(
r

r0

)σ̄(
Y0+φA(r, ρ)

)
,

with ηA ≡ 0 when σ0 6∈ N.
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The function family φA is of order
O(rp+qαωq+1

(
r
r0
, α
)
| ln r|) and, for any integer

l ≥ 2, is of class Cl−2 in (r1/l, r1/lω
(
r
r0
, α
)
, ρ, µ, σ).
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Compensators

For ξ > 0 :

ω(ξ, α) = ωα(ξ) =

ξ−α−1
α , α 6= 0,
− ln ξ, α = 0.

Ω(ξ, α, β) = Ωα,β(ξ) =

ω(ξ,α)−ω(ξ,β)

α−β , α 6= β,
1
2(ln ξ)2, α = β,

ω = O(ξ−|α|| ln ξ|), Ω = O(ξ−Max{|α|,|β|} ln2 ξ),
ω → +∞, Ω→ +∞ for (ξ, α)→ (0, 0) or
(ξ, α, β)→ (0, 0, 0)
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Ck function on monomials
The functions f(r, ρ) are Ck function on
monomials for arbitrary large k :

f(r, ρ) = f̃(M1, . . . ,Ml),
with f̃ a Ck-function and the Mi are monomials in
ra, ρb, raωcγ, r

aΩd
γ1,γ2

, ω−eγ , where a, b, c, d, e > 0.
We will have to consider the derivation LXf with
X = r ∂∂r − ρ

∂
∂ρ .

This derivation has good properties. For instance, if
f is a Ck function on monomials, then LXf is
also a Ck−1 function on monomials.
The functions depend smoothly on parameters
(µ̄3, µ, . . .).
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Expression of the difference map V
1 Case σ0 6∈ N.

V = a0(1 + · · · ) + a1r
σ̄3(1 + · · · ) + a2r

σ̄3ρ(1 + · · · ),

2 Case σ0 = p 6= 1.

V = a0(1+· · · )+a1r
σ̄3(1+· · · )+a2r

σ̄3ρ(1+· · · )+a3r
σ̄3ρpω.

3 Case σ0 = 1.

V = a0(1+ · · · )+a1r
σ̄3(1+ · · · )+a2r

σ̄3ρ(1+ · · · )

+ a3ρω(1 + · · · )
ai : functions of the parameter and ω = ω( r

r0
, σ̄3 − 1).

+ · · · : Ck on monomials, for large k.
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Obtention of leading monomials

Transition S along the boundary arc :

S(r, ρ) = (rF (r, ρ), ρF−1(r, ρ).

To obtain the leading monomial rσ̄3ρ behind the
coefficient a2, we need to prove that :

F (r, ρ) = 1 + ∗µ̄3ρ(1 +O(M)) +O(r)O(MC),

where ∗ is a strictly positive constant and
MC = (µ̄3, µ4, µ5) and M = (MC , µ̄2, b0 − 1).
This comes from the properties of quadratic
vector fields.
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Starting with the blow-up system, restricted to {r = 0 :}

ρ̇ = −ρ(x̄− µ̄3ρ) = P (ρ, x̄),

˙̄x = 2 + (1− 2B)x̄2 − 2µ̄2ρ
2 − µ̄3x̄ρ = Q(ρ, x̄),

we have that

S′′(0) = 2
(
f ′4(0)S′(0)

(
P ′ρ
Q

)
(0, f4(0))− f ′3(0)

(
P ′ρ
Q

)
(0, f3(0))

)

+
∫ f4(0)

f3(0)

(
P ′′ρρ
Q

(0, x̄)− 2
P ′ρQ

′
ρ

Q2 (0, x̄)
)

exp
(∫ x̄

f3(0)

(
P ′ρ
Q

)
(0, x)dx

)
dx̄

where the fi depend on the choice of sections.
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For instance, the last term is given by :

I3 = 4µ̄3(2+(1−2B)x2
0)

1
2(1−2B)

∫ −x0

x0
(1−Bx̄2)(2+(1−2B)x̄2)

8B−5
2(1−2B)dx̄.

We have to prove that 1
µ̄3
S ′′(0) 6= 0. It is rather

involved. For instance, in the case B0 6= 3
4 , we have

to use an expression of I3 through the Gauss
hypergeometric function.
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Finite cyclicity for the boundary l.p.s.

We have to prove that V has a finite multiplicity
along the curves rρ = ν. To this end we use the
procedure of “division-derivation” with the
derivation LX , where X = r ∂∂r − ρ

∂
∂ρ .

To control the recurrence in the procedure we use
the following result :
If M = raρbωcα is a non resonant monomial, i.e.
such that a 6= b then
LX

[
M(1 + o(1))

]
= (a− b+ αc)M(1 + o(1))

where terms o(1) are Ck-functions on monomials.
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1 Case σ0 6∈ N. Up to the relation rρ = ν, the sequence of
leading monomials reduces to {1, rσ0 , rσ0−1} and is non
degenerate. The procedure works directly. The cyclicity is less
than 2.

2 Case σ0 = p 6= 1. The sequence of leading monomials
reduces to {1, rp, rp−1, ω}. After one preliminary step, the
sequence of leading monomials reduces to {rp+α, rp−1+α, rα}
and we can apply the procedure. The cyclicity is less than 3.

3 Case σ0 = 1. We begin with the sequence {1, rα, r1+α, rαω}.
In order to apply the procedure we have to take into account
that the remainders are of order O(rδ) for a δ > 0 After one
preliminary step we reduce to the sequence {1, ρ}. The
cyclicity is less than 2.

The difficulty in the two last cases is that we encounter
resonant leading monomials in the recurrence.
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Boundary l.p.s. of (H3
13)

The regular transition T is replaced by a transition
near two saddle points at infinity. If τ is the
hyperbolicity ratio at these points, we obtain that

V = a0(1+· · · )+a1r
σ̄2+τ(1+· · · )+a2r

σ̄2+τρ(1+· · · )
We compute that σ̄2 + τ 6= 1. Then we can apply
the procedure of division-derivation to obtain that
the cyclicity is less than 2.
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Finite cyclicity of the graphic (I1
14)

Recall that depending on the parameter we may
have different families of secondary l.p.s :
Sxhh1, Sxhh2, . . . , Sxhh10.
In each case, to obtain the finite cyclicity of (I1

14),
we have to prove that every secondary l.p.s has
itself a finite cyclicity.
Almost every case was treated in the previous work
by Rousseau and Zhu.
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It remained to treat the boundary l.p.s (studied
above) and the intermediate and lower l.p.s. of
Sxhh1 and Sxhh5.
For the intermediate l.p.s. it is sufficient to use that
∂
∂µ̄3
S is non linear. For the lower l.p.s. we have a

difference map V (x) of one variable x :

V (x) = a0(1 + · · · ) + a1x(1 + · · · ) + a2xω(1 + · · · ),

where {x = 0} corresponds to the l.p.s. This gives a
cyclicity less than 2 for the lower l.p.s.
This method does not give an explicit cyclicity for
(I1

14).
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Secondary limit periodic sets

Sxhh1 Sxhh2 Sxhh3 Sxhh4

Sxhh5 Sxhh6 Sxhh7 Sxhh8

Sxhh9 Sxhh10
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Thanks you for your attention !
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