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Introduction: A quick browse to some previous works

[CGP-1996] Limit Cycles for Non Smooth Differential Equations via
Schwarzian Derivative

[CGP-1999] The center problem for discontinuous Liénard
differential equation

[CGP-2000] Center-focus and isochronous center problems for
discontinuous differential equations

[CGP-2001] Degenerate Hopf bifurcations in discontinuous planar
systems

[PT-2013] Canard trajectories in 3D piecewise linear systems
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[CGP-1996] Limit Cycles for Non Smooth Differential Equations via
Schwarzian Derivative

(ẋ, ẏ) =

{
(P+(x, y), Q+(x, y)) = Xn +Xm,
(P−(x, y), Q−(x, y)) = Yp + Yq,

where Xu and Yu are homogeneous polynomial v.f. of degree u

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.A quick browse to some previous works Related works References on neuron models

A. F. Filippov, “Differential Equations with Discontinuous Righthand
Sides,” Kluwer, Dordrecht, 1988.

Theorem 1

This system has one non simple singular limit cycle or, at most, four simple
singular limit cycles. Moreover, at most two of these singular limit cycles
surround the origin.

Theorem 2

All its periodic orbits surround the origin and it has, at most, one singular
limit cycle (which is simple), and two regular limit cycles.

Tools: geometry of the set of points at which the derivative of the
angular component of the vector field is zero; polar coordinates; the
Schwarzian derivative of the Poincaré return map.
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[CGP-1999] The center problem for discontinuous Liénard
differential equation

(ẋ, ẏ) =

{
(−y + f+(x), x), if x ≥ 0
(−y + f−(x), x), if x ≤ 0,

(1)

and

(ẋ, ẏ) =

{
(−y + f+(x), x), if y ≥ 0
(−y + f−(x), x), if y ≤ 0,

(2)

where f±(x) =
∑
i≥2 a

±
i x

i.

We derive the general expression of the Lyapunov constants.
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Theorem 1

For (1), the n-th Lyapunov constant, n ≥ 2 is

Vn =

{
2n!!

(n+1)!! (a
+
n − a−n ) if n is even,

πn!!
(n+1)!! (a

+
n + a−n ) if n is odd,

Theorem 2

For (2), the n-th Lyapunov constant, n ≥ 2 is: V2 = 0 and

Vn =

{ ∑n/2−1
j=1 Cn/2,ja

+
2j+1(a+n−2j + a−n−2j) if n is even,

πn!!
(n+1)!! (a

+
n + a−n ) if n is odd,

for some Cn/2,j constant numbers.

Tools: the Lyapunov constants for nonsmooth differential equations are
quasi-homogeneous polynomials in the variables given by the coefficients
of the differential equation
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[CGP-2000] Center-focus and isochronous center problems for
discontinuous differential equations

ż =

{
F1(z, z̄), if Im(z) ≥ 0
F2(z, z̄), if Im(z) ≤ 0,

(1)

where z = x+ iy = Re(z) + iIm(z) ∈ C

ż = Fj(z, z̄), where j = 1, 2. (1.j)

We relate the order of degeneracy of the critical point with the orders of
the two components.
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Definition

The origin is a (m, k)-monodromic point if

Π(ρ)− ρ = O(ρm) and T (ρ)− 2π = O(ρk).

(m, ∗) means that the origin of (1) is a (m, k)-monodromic point for
some k.

Theorem

If (1) has a (m, k)-monodromic point and (1.1) has a (n, ∗)-monodromic
point, then (1.2) has (m̃, ∗)-monodromic point with m̃ ≥ min(m,n).

Tools: the use of the relation between the extensions of the half return
maps to a whole neighbourhood of zero
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[CGP-2001] Degenerate Hopf bifurcations in discontinuous planar
systems

(ẋ, ẏ) =

{
(X+(x, y), Y +(x, y)), if y ≥ 0
(X−(x, y), Y −(x, y)), if y ≤ 0,

(1)

where X±, Y ± are real analytical functions. The role of foci points is
inherited by four types of singular points, pseudo-focus.

Obtain the general expressions for the first three Lyapunov constants.
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[PT-2013] Canard trajectories in 3D piecewise linear systems

Singularly perturbed 3–dimensional piecewise linear differential systems u̇1 = ε(a11u1 + a12u2 + a13v + b1),
u̇2 = ε(a21u1 + a22u2 + a23v + b2),
v̇ = u1 + |v|,

where 0 < ε� 1.

Fenichel’s geometric theory allows us to analyze the dynamics of

u̇ =
du

dt
= εg(u,v, ε), v̇ =

dv

dt
= f(u,v, ε),

where (u,v) ∈ Rs × Rq when f and g are sufficiently smooth functions.
The coordinates of u are called slow variables, while the coordinates of v
are called fast variables.
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This analysis follows by combining the behaviour of the singular orbits,
corresponding to the limiting problems, ε = 0

layer: u̇ = 0, v̇ = f(u,v, 0),
reduced: u′ = g(u,v, 0), 0 = f(u,v, 0), u ∈ Rs

where ′ = d/dτ , τ = εt. Critical manifold

S = {(u,v) ∈ Rs+q | f(u,v, 0) = 0}.

We call normally hyperbolic the singular points (u0,v0) ∈ S for which the
eigenvalues of the Jacobian matrix Dvf(u0,v0) have nonzero real part.
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Consider S0 ⊂ S a compact set such that every point in S0 is a normally
hyperbolic singular point.

S0 ⇒ Sε locally invariant slow manifold and

The restriction of the flow of the perturbed system to the slow manifold
Sε is a small smooth perturbation of the flow of the reduced problem.

Orbits of the perturbed system are composed by:

slow segments are close to the flow of the reduced problem

fast segments are close to the flow of the layer problem

Related to the loss of normal hyperbolicity is the appearance of relaxation
oscillation and canard orbits.
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Canard Orbits in 2-D

[Izhikevich, Springer(2007)]

f=0

g=0

Canard orbits cross from the attracting manifold to the repelling
manifold.
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Question

What remains of previous dynamical behaviour when smoothness is no
longer present?

In [PRSZ2011]1 the authors prove the existence of canard cycles in
singularly perturbed piecewise differential systems with s = 2 and q = 1.

This fact suggests that canards are not exclusively a differential
phenomenon, but rather a geometric one.

1A. Pokrovskii, D. Rachinskii, V. Sobolev and A. Zhezherun, Topological degree in
analysis of canard-type trajectories in 3-D systems, Applicable Analysis: An
International Journal, 90 (2011), 1123–1139.
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For next singularly perturbed 3–dimensional piecewise linear differential
system  u̇1 = ε(a11u1 + a12u2 + a13v + b1),

u̇2 = ε(a21u1 + a22u2 + a23v + b2),
v̇ = u1 + |v|,

where 0 < ε� 1,

we present results similar to those obtained by the Geometric
Singular Perturbation Theory.

we obtain the global expression of the slow manifold Sε.
we characterize the existence of canard orbits in such systems.

we provide numerical arguments for the existence of a canard cycle.
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Representation of the canard cycle γpc , slow manifolds S̃−ε ∪ S̃+ε and the
border planes {v = η}, {v = 0} and {v = −η}, which separate the
regions where the system is linear. We highlighted the points of
intersection of γpc with the border planes.
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Related works

Canard dynamics has been investigated in planar PWL slow-fast systems,
from the 1990s.

After a brief mention of the “loss” of canards in PWL systems with two
corners in

1991 M. Itoh and R. Tomiyasu, Canards and irregular
oscillations in a nonlinear circuit, in Circuits and Systems,
1991., IEEE International Sympoisum on, IEEE, 1991, pp.
850–853.

The first study of a PWL van der Pol system from the perspective of
canards (McKean ODE model)

1991 M. Komuro and T. Saito, “Lost solution” in a piecewise
linear system, IEICE Trans., vol. E, 74 (1991), pp.
3625–3627.
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Up to very recently

2011 D. J. Simpson and R. Kuske, Mixed-mode oscillations in a
stochastic, piecewise-linear system, Physica D, 240
(2011), pp. 1189–1198.

2012 H. G. Rotstein, S. Coombes, and A. M. Gheorge,
Canard-like explosion of limit cycles in two-dimensional
piecewise-linear models of FitzHugh-Nagumo type, SIAM
Journal on Applied Dynamical Systems, 11 (2012), pp.
135–180.

2013 M. Desroches, E. Freire, S. J. Hogan, E. Ponce, P. Thota,
Canards in piecewise-linear systems: explosions and
super-explosions, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science 469
(2013).

2014 S. Fernández-Garćıa, M. Desroches, M. Krupa, and A. E.
Teruel, Canards in planar piecewise linear systems with
three zones. Preprint.
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The four piece of the critical manifold

The cubic critical manifold is replaced by a PWL caricature consisting of
three straight line segments. The corners play the role of the fold points
and cycles resembling canards and evolving around these corners were
identified by simulation.

1997 N. Arima, H. Okazaki, H. Nakano, A generation
mechanism of canards in a piecewise linear system, IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 80 (1997)
447–453.

reasons for the equivalent of canards with head can arise only in systems
with one more piece in between the two corners.

The main idea to obtain true canard cycles in a planar PWL systems
consists in approximating the critical manifold near a fold by a
three-piece PWL function.
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A large class of neuron models based on the approximation that the
membrane of the neuron behaves like a circuit. The voltage equation is
obtained by applying Kirchoff’s law.

After the model by (HH model):

1952 A. L. Hodgkin and A. F. Huxley, A quantitative
description of membrane current and its application to
conduction and excitation in nerve, The Journal of
physiology, 117 (1952), p. 500.
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The first reduction to a planar system (FHN model):

1961 R. FitzHugh, Impulses and physiological states in
theoretical models of nerve membrane, Biophysical
Journal, 1 (1961), pp. 445–466.

1962 J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse
transmission line simulating nerve axon, Proceedings of
the IRE, 50 (1962), pp. 206–2070.

where, the vector field of the HH model was approximated by a
polynomial system through the crucial observation that the voltage
nullcline is roughly cubic shaped.

Hence, the FHN model appears as a modified van der Pol system.
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The FHN model was investigated from the slow-fast perspective and in

1970 H. P. McKean Jr, Nagumo’s equation, Advances in
mathematics, 4 (1970), pp. 209–223,

further simplified by approximating the cubic voltage nullcline by a PWL
function.
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PWL slow-fast systems

Since the late 1990s several papers have shown that the canard
phenomenon can be reproduced with piecewise-linear (PWL) dynamical
systems in two and three dimensions, exhibiting an slow-fast dynamics.

Smooth slow-fast dynamical systems models in neuroscience displaying
canard-induced MMOs.

Goal

We aim to explore the gap between PWL and smooth slow-fast
dynamical systems by analysing canonical PWL systems that display folded
singularities.
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R.P., A. E. Teruel and C. Vich, Slow-fast n-dimensional piecewise linear
differential systems. Preprint 2015.

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

This paper is mainly concerned with maximal canard orbits occurring in
n-dimensional piecewise linear slow-fast systems.

More precisely, conditions for the existence of maximal canard orbits
and/or faux canard orbits are established.

We show that these maximal canards perturb from singular orbits
(singular canards) whose order of contact with the fold manifold is
greater than or equal to two.
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Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

u ∈ Rs slow variable
v ∈ R fast variable

0 < ε� 1 ratio of time scales
n = s+ 1 system dimension

A = (aij)1≤i,j≤s s× s real matrix
a = (a1, a2, . . . , as)

T vector in Rs
b = (b1, b2, . . . , bs)

T vector in Rs

Rather general: f(u, v, ε) = dTu + |v| , with d 6= 0, can be

transformed into our system (u→
(
dTu, u2, . . . , un

)T
).

Continuous and nonlinear system (but, piecewise linear).

2 regimes: {v ≤ 0} and {v ≥ 0} and 1 common boundary {v = 0}.
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T vector in Rs
b = (b1, b2, . . . , bs)

T vector in Rs

Rather general: f(u, v, ε) = dTu + |v| , with d 6= 0, can be

transformed into our system (u→
(
dTu, u2, . . . , un

)T
).

Continuous and nonlinear system (but, piecewise linear).

2 regimes: {v ≤ 0} and {v ≥ 0} and 1 common boundary {v = 0}.
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Unperturbed Dynamics:

Associated to {
u̇ = ε(Au + av + b),
v̇ = u1 + |v|,

we have the:

fast subsystem (layer problem)

slow subsystem (reduced problem)

critical manifold, where the slow subsystem is defined, S
fold manifold, F , when normal hyperbolicity fails, (points where S
folds)
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Unperturbed Dynamics:

Fast subsystem{
u̇ = 0,
v̇ = u1 + |v|,

Critical manifold

S = {(u, v) ∈ Rn : u1+|v| = 0}

S = S+ ∪ F ∪ S−
S+ = {u1 + v = 0; v > 0}
S− = {u1 − v = 0; v < 0}
F = {u1 = 0, v = 0}

where S+ and S− are normally
hyperbolic and F is the fold
manifold
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Critical manifold
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S = S+ ∪ F ∪ S−
S+ = {u1 + v = 0; v > 0}
S− = {u1 − v = 0; v < 0}
F = {u1 = 0, v = 0}

where S+ and S− are normally
hyperbolic and F is the fold
manifold

S+

S−

F

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Unperturbed Dynamics:

Slow subsystem associated to{
u′ = Au + av + b,

εv′ = u1 + |v|,
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Unperturbed Dynamics:

Slow subsystem{
u′ = Au + av + b,

0 = u1 + |v|,

The slow subsystem is a linear
differential equation defined on
the critical manifold S, but it is
not defined on F . To overcome
this problem, we consider the
Filippov’s convention.

S+

S−

F

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Singularly Perturbed System

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

Sε = S+ε ∪ S−ε

The manifold Sε = S+ε ∪ S−ε is a
Fenichel’s manifold.
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Singularly Perturbed System

Theorem 1.

The manifold Sε = S+ε ∪ S−ε is a Fenichel’s manifold.

S+
ε =

{
(u, v) ∈ Rn : v ≥ 0,

−eT
1 (εA− λ+

n I)
−1u+ v =

ε

λ+
n

eT
1 (εA− λ+

n I)
−1b

}
.

S−
ε =

{
(u, v) ∈ Rn : v ≤ 0,

−eT
1 (εA− λ−

n I)
−1u+ v =

ε

λ−
n

eT
1 (εA− λ−

n I)
−1b

}
.

For ε > 0 and sufficiently small, Sε satisfies:

a) Sε is locally invariant manifold.

b) The flow on Sε is a regular perturbation of the flow on S.
c) S+ε and S−ε are the repelling and the attracting branch, respectively.
d) Given a compact subset Ŝ of the critical manifold S, ∃Ŝε compact

subsets of the slow manifold Sε (diffeomorphic to Ŝ) such that
dH(Ŝε, Ŝ) = O(ε), (dH := Hausdorff distance).

e) Sε is a regular perturbation of S.
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Maximal Canard Orbits

A point pε in S+ε ∩ S−ε , it is said to be a maximal canard (resp. faux
canard) point if the orbit, γpε , through pε is a maximal canard (resp.
faux canard) orbit.

Sε = S+ε ∪ S−ε

Maximal canard orbits cross
from S−ε to S+ε .
To locate them we study:

Behaviour of the flow on F ,
order of contact of
pε ∈ S+

ε ∩ S−
ε .
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Existence of Maximal Canard Orbits.

Study of S+ε ∩ S−ε

Theorem 2.2

a) If a1j 6= 0 for some j ∈ {2, . . . , s}, then dim(S+ε ∩ S−ε ) = n− 3

a.1) If u∗
1 > 0, ∃ maximal canard through pε and order of contact 1;

a.2) If u∗
1 < 0, ∃ faux canard through pε and order of contact 1;

a.3) If u∗
1 = 0, order of contact greater than or equal to 2.

b) If a1j = 0 for all j ∈ {2, . . . , s} and b1 = 0, then
dim(S+ε ∩ S−ε ) = n− 2 and neither maximal nor faux canard orbits
exist.

c) If a1j = 0 for all j ∈ {2, . . . , s} and b1 6= 0, then S+ε ∩ S−ε = ∅ and
neither maximal nor faux canard orbits exist.
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Source of Maximal Canard Orbits

Theorem 3.

a) Each point pε in S+ε ∩ S−ε lies
in the unfolding of a contact
point of order greater than or
equal to 2 of the slow
subsystem with the fold
hyperplane F .

b) If n = 3, then the maximal
canard point (or faux canard
point) of order 1 lies in the
unfolding of the two-fold
visible-visible (or
invisible-invisible) point of the
slow subsystem.
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Source of Maximal Canard Orbits

Representation of a 2-dimensional reduced flow. Upper panels:
unperturbed case surrounding the invisible two-fold p∗0. Bottom panels:
perturbed flow where the black point p∗ε stands for the faux canard
point, while the white points p+ and p− are the breaking points of p∗0.
These white points are invisible two-fold singularities for S+ε and S−ε .
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Conclusions

R.P., A. E. Teruel and C. Vich, Slow-fast n-dimensional piecewise linear
differential systems. Preprint 2015.

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

An explicit expression for the slow manifold have been derived

This expression allows to find maximal canard orbits

We obtain the points from where maximal canard orbits perturb

These points are contact points of order greater than or equal to
two of the reduced flow with the fold manifold
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MMOs in PWL slow-fast dynamics in R3

M. Desroches, A. Guillamon, E. Ponce, R.P., S. Rodrigues and A.E.
Teruel, Canards, folded nodes and mixed-mode oscillations in
piecewise-linear slow-fast systems. Preprint 2015.

Slow-Fast Piecewise Linear System (PWLS)

εẋ = −y + f(x), ẏ = p1x+ p2z, ż = p3.

Introduce a theory for slow-fast dynamics by using PWL systems,

and then deriving simplified models that are meaningful for
neuroscience applications.

Idea: reproduce canard-induced MMO behaviour in three-dimensional
PWL slow-fast systems and investigate the equivalent of maximal canards
(primary, secondary) and folded nodes.
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Slow-Fast Piecewise Linear System (PWLS)

εẋ = −y + f(x), ẏ = p1x+ p2z, ż = p3.

Goals:

This paper analyses PWL systems displaying folded singularities, primary
and secondary canards, with a similar control of the maximal winding
number as in the smooth case.

We also show that the singular phase portraits are compatible in both
frameworks.

Finally, we show on an example how to construct a (linear) global return
and obtain PWL MMOs.
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Strategies to construct canard type dynamics 3D PWL

1) To construct transient canard trajectories in three-dimensional
systems, building up on the knowledge from the planar case, we proceed
as follows.

From the planar case, the simplest way to consider three-dimensional
models is to put a slow drift on the parameter that displays the canard
(or quasi-canard).

For instance, for systems in Liénard form2

εẋ = y − f(x), ẏ = a− x. (1)

We will simply add a trivial slow dynamics on the parameter displaying
the explosion in the planar system. Consider the slow drift

ȧ = c, c ∈ R. (2)

2
M. Wechselberger, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM Journal on Applied Dynamical

Systems, 4 (2005), pp. 101–139.
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Strategies to construct canard type dynamics 3D PWL

2) To approximate a quadratic fold of a smooth slow-fast system, we
distinguishing between two-piece local systems and three-piece local
systems given by f .

Hence, (1)+(2),

εẋ = y − f(x),
ẏ = a− x,
ȧ = c.

That is, we will consider,

εẋ = −y + f(x), ẏ = p1x+ p2z, ż = p3.

where 0 < ε� 1,

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Strategies to construct canard type dynamics 3D PWL

2) To approximate a quadratic fold of a smooth slow-fast system, we
distinguishing between two-piece local systems and three-piece local
systems given by f .

Hence, (1)+(2),
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Generating mechanism: quasi-canard explosion

f(x) = x+
1

2
(1 + k)(|x− 1| − |x+ 1|)

Transient MMO in a three-dimensional version of the two-piece local
system (1). Parameter values for this transient MMO trajectory are:
ε = 0.1, k = 0.5, c = −0.001.
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Generating mechanism: quasi-canard explosion

1) an explosive behaviour in the
growth of small oscillations

2) no repelling slow manifold

Hence, one can create transient MMO dynamics but not of true canard
type.
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Generating mechanism: canard explosion

f(x) = Fδ(x) =


−x+ (β + 1)δ if x ≥ δ,
βx if |x| ≤ δ,
x− (β − 1)δ if x0 < x < −δ,
−x+ 2x0 − (β − 1)δ if x ≤ x0.

Canard-induced MMOs in transient dynamics exactly as in the smooth
case
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Generating mechanism: canard explosion

Observe:

1) the four-piece PWL critical
manifold

2) a dynamic canard explosion,
and hence, folded node type
dynamics

The parameter values of the critical manifold are the same as in
[AON97], and the speed of the drift is c = −0.01.

Therefore, this could be -in PWL systems- the correct framework to find
where the equivalent of the folded node is.
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Dynamics near the PWL equivalent of folded singularities

Three-piece local system,

εẋ = −y + f(x)
ẏ = p1x+ p2z
ż = p3, where f = fδ.

fδ(x) =

{
0 if |x| ≤ δ,
|x| − δ if |x| ≥ δ.
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Dynamics near the PWL equivalent of folded singularities

Case p1 > 0: (a) folded saddle, (b) folded node .

In the central zone, H(x, y, z) = εp1(p1x+ p2z)
2 + (p1y − εp2p3)2, is a

first integral. It is either a hyperbola (p1 < 0) or a cylinder (p1 > 0),
with axis x = −p2p1 z, y = εp2p3

p1
. If p1 < 0 no rotation can happen in

this region.
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Dynamics near the PWL equivalent of folded singularities

If p1 > 0, the eigenvalues are ±i√εp1, therefore trajectories do rotate in
this region.

The line segment organises the dynamics of the full system by acting as
an axis of rotation for trajectories that display Small-Amplitude
Oscillations (SAOs) in the central zone, which corresponds to the
so-called weak canard in the smooth case.

It can be proved that the associated maximal winding number µ is
obtained as

µ =
δ

π
√
ε

p1
√
p1

|p2p3|

Note that µ is reminiscent of the eigenvalue ratio at a folded singularity
in the smooth setting
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Dynamics near the PWL equivalent of folded singularities

In the smooth case, this maximal winding number is independent of ε.

Thus, in order to reproduce quantitatively the behaviour observed in the
smooth context, we choose

δ = π
√
ε,

and hence, the maximal winding number is

µ =
p1
√
p1

|p2p3|

This choice gives a complete match (qualitative and quantitative) with
the behaviour of smooth slow-fast systems near folded singularities. That
is,

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Dynamics near the PWL equivalent of folded singularities

the ε-dependence of δ given by

δ = π
√
ε,

forces the central zone collapse to a single corner-line in the singular limit
ε = 0, that is, the three-piece local system for ε > 0 converges, in the
singular limit, to a two-piece local system. Hence,

one can see the central zone, needed to obtain canard dynamics, as
a blow-up of the corner-line that exists in the singular limit.

the size of this blow-up, O(
√
ε), matches that of the smooth case.

Recall: when blow-up is performed near non-hyperbolic points in smooth
slow-fast systems, it can be proven that the region of hyperbolicity, where
canards are shown to exist, is extended in the blown-up locus by a size of
O(
√
ε).
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Maximal canards and weak canards

But, are there maximal canards? i.e. explicit solutions passing from the
attracting slow manifold to the repelling one.

It can be shown that, yes.

In particular it can be shown that, indeed, there is a unique maximal
canard, that passes from one side to the other without completing a full
rotation; by definition, this special solution is the primary canard or
strong canard.

There are, also, maximal canards completing full k rotations, for some
values of k, named secondary canards.
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Proposition

Consider p3 > 0, δ = π
√
ε and ε small enough, and assume that every

maximal canard with a given flight time, between the switching planes, is
unique. The following statements hold.

a) If p1 > 0 and p2 < 0, for every integer k with 0 ≤ k ≤ [µ], there
exists a maximal canard γk intersecting the switching plane
{x=−δ} at pk = (−δ, yk, zk) where

yk = −
((

k +
1

2

)
p2p3√
p1

+ p1

)
πε

3
2 − p2p3ε2 +O(ε

5
2 ),

zk = −
(
k +

1

2

)
p3√
p1
π
√
ε+O(ε).

(3)

Moreover, γk turns k times around the weak canard γw, therefore γ0
is the strong canard.

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Proposition

Consider p3 > 0, δ = π
√
ε and ε small enough, and assume that every

maximal canard with a given flight time, between the switching planes, is
unique. The following statements hold.

b) If p1 > 0 and p2 > 0, there exists a unique maximal canard γ0
intersecting the switching plane at p0 = (−δ, y0, z0) where the
coordinates y0 and z0 satisfy equation (3) with k = 0. Since, γ0
turns less that one time around the faux canard γf , therefore γ0 is
the strong canard.

c) If p1 < 0, there are no maximal canards.

Finally, we show on an example how to construct a (linear) global return
and obtain PWL MMOs.
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A PWL example with MMOs

A global return near a PWL folded node, so that we can create
canard-induced MMOs.

First, adding a fourth zone to allow for LAOs

f̃δ(x) =


−x− δ if x ≤ −δ,

0 if |x| ≤ δ,
x− δ if δ < x < x0,
−x+ 2x0 − δ if x ≥ x0.

Then, add linear terms to the z equation in order to obtain a global
return mechanism.

εẋ = −y + f̃δ(x)
ẏ = p1x+ p2z
ż = p3 + α1(x− κ) + α2(y − ζ) + α3(z − ξ).
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Periodic PWL MMO Γ near a folded node. Panels (a1) and (a2) show a
phase-space representation of Γ together with the 4-piece PWL critical
manifold C0; panel (a2) is a zoom of panel (a1) near the central flat
zone, highlighting the SAOs

Rafel Prohens On periodic orbits in non-smooth differential equations with applications



Introduction Qualitative compatibility between PWL and smooth diff. eq. Quantitative analysis in PWL diff. eq.Maximal and faux canards in Rn MMOs in PWL slow-fast dynamics in R3

Panel (b1) shows the time profile of Γ for the fast variable x. Panel (b2)
shows a similar MMO obtained by imposing conditions so that Γ has
SAOs with a constant amplitude.

MMO in this model have SAOs with increasing amplitude as the
trajectory travels through the central zone. This is simply due to the fact
that the eigenvalues in the central zone have non-zero real part because
of the new terms in the z-equation.
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Application: Estimation of the synaptic conductance in a
McKean-model neuron

A. Guillamon, R. P., A.E. Teruel and C. Vich, Estimation of the synaptic
conductance in a McKean-model neuron. Preprint 2015.

To understand the flow of information in the brain,

estimating the synaptic conductances impinging on a single neuron,
directly from its membrane potential, is one of the open problems.

In this work, we aim at giving a first proof of concept to address the
estimation of synaptic conductances when the neuron is spiking.
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Estimation of the synaptic conductance in a
McKean-model neuron

Simplified model of neuronal activity, namely a piecewise linear version of
the Fitzhugh-Nagumo model, the McKean model

C
dv

dt
= f(v)− w − w0 + I − Isyn,

dw

dt
= v − γw − v0,

where f is a 3-zone piecewise linear function,

f(v) =

 −v v < a/2,
v − a a/2 ≤ v ≤ (1 + a)/2,
1− v v > (1 + a)/2.

variables: membrane potential, v, the fast variable and w the slow
component,
parameters: membrane capacitance, C, 0 < C < 0.1; total current
that the neuron is receiving from non-synaptic inputs, I; v0, w0, γ
and a conductance properties and combinations of membrane
reversal potentials.
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C
dv

dt
= f(v)− w − w0 + I − Isyn,

dw

dt
= v − γw − v0,

we consider the synaptic current3 Isyn = gsyn(v − vsyn) apart from
the total one

gsyn stands for the synaptic conductance and is considered to be
constant

Therefore, Isyn can be understood as a representation of the mean field
of the synaptic inputs.

3
Synaptic current is the movement of charge through the postsynaptic membrane due to synaptic transmission.

The post-synaptic membrane is the membrane of the nerve after the synapse.
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Existence and uniqueness of the periodic orbit

Llibre J, Ordóñez M, Ponce E. On the existence and uniqueness of limit
cycles in planar continuous piecewise linear systems without symmetry.
(2013). Nonlinear Anal. Real World Appl.

If

gsyn > 1− 1

γ
, I1 < I < I2 and |gsyn + Cγ| < 1,

Th.1 gives that there exists a limit cycle which is unique and stable.
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⇒ At a first step, we infer steady synaptic conductances from the cell’s
oscillatory activity.

The idea is to get gsyn as follows:

once we get the analytical expression of the period of oscillation
T (gsyn), and

when we know the period of oscillation, T̃ , then

estimate the value of gsyn by solving

T (gsyn) = T̃ (inverse problem)

In practice...
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to solve

T (gsyn) = T̃ , (inverse problem)

we approximate T (gsyn) and T̃ by

Ta an analytical approximation of T (gsyn)

T̃a a numerical approximation of the period of oscillation of T̃ .

and then we solve
Ta(gsyn) = T̃a → gsyn,a

instead.
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Steady synaptic conductances estimation

a/2 (1+a)/2

Tlateral =
1

2λs
ln

(∣∣∣∣ γ(I − Ii)
γ(I − Ii)−K

∣∣∣∣)
Tcentral =

1

2λq
ln

(∣∣∣∣γ(I − Ii) +K1,i

γ(I − Ii) +K2,i

∣∣∣∣) , i = 1, 2.

Tlateral stands for TL when i = 1 and for TR when i = 2. Tcentral stands
for Tc,up when i = 1 and for Tc,down when i = 2. K, K1,i and K2,i are
functions depending on the system parameters and they have a non-linear
dependence with gsyn.
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Relative error when we estimate the synaptic conductance. Different
traces correspond to different values of gsyn
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(A) versus the applied current, I, for C = 10−4.

(B) versus the membrane capacitance, C, for I = I1 + 10−3

a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2.
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Variable synaptic conductances estimation

We want to estimate gsyn when the neuron is regularly spiking.

Idea:

1 Solve McKean system using the RK78 method.

2 Once we have v(t), we find the different peaks of v(t) and we
compute the differences in time to obtain the sequence of periods
{T1, . . . , Tk}.

3 For each Tk we get gksyn by using the steady synaptic conductance

estimation for T (gksyn, C, I) = Tk.

4 We interpolate to obtain gsyn(t).
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Computational network that models layer 4Cα of primary visual cortex
(McLaughlin et al (2000) and Tao et al (2004)).
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Estimation: Panel A shows the real and the estimated conductances vs
time. The estimation fits the synaptic conductance with a small shift
which is larger as C increase. C = 0.001.
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B and C: scatter plot of the real vs the estimated
Panel B: after interpolation; Panel C: only with estimated values.
Parameters: a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 µF/cm2 ,

I = 0.625 µA/cm2 , gsyn(t0) = 0.6278.
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We still are working in these problems...

Thanks for your attention
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