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In this paper, we consider variform exact peakon solutions for four nonlinear wave equations. We
show that under different parameter conditions, one nonlinear wave equation can have different
exact one-peakon solutions and different nonlinear wave equations can have different explicit
exact one-peakon solutions. Namely, there are various explicit exact one-peakon solutions, which
are different from the one-peakon solution pe−α|x−ct|. In fact, when a traveling system has a
singular straight line and a curve triangle surrounding a periodic annulus of a center under some
parameter conditions, there exists peaked solitary wave solution (peakon).
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1. Introduction

In recent years, nonlinear wave equations with non-
smooth solitary wave solutions, such as peaked soli-
tons (peakons) and cusped solitons (cuspons), have
attracted much attention in the literature. Peakon
was first proposed by [Camassa & Holm, 1993;
Camassa et al., 1994] and thereafter other peakon
equations were developed (see [Degasperis & Pro-
cesi, 1999; Degasperis et al., 2002; Qiao, 2006, 2007;
Li & Dai, 2007; Novikov, 2009], and cited references
therein). Peakons are the so-called peaked solitons,
i.e. solitons with discontinuous first-order derivative
at the peak point. Usually, the profile of a wave
function is called a peakon if at a continuous point
its left and right derivatives are finite and have dif-
ferent signs [Fokas, 1995]. But if its left and right

derivatives are positive and negative infinities,
respectively, then the wave profile is called a cuspon.

In our paper [Li & Chen, 2007] and book [Li &
Dai, 2007] (or more recent book [Li, 2013]), using
the dynamical system approach, it has been theo-
retically proved that there exists a curve triangle
including one singular straight line in a phase por-
trait of the traveling wave system corresponding to
some nonlinear wave equation such that the trav-
eling wave solutions have peaked profiles and lose
their smoothness. In fact, the existence of a singular
straight line leads to a dynamical behavior with two
scale variables in a period annulus of a center. For
a singular nonlinear traveling wave system of the
first kind, the following two results hold (see [Li,
2013]).

∗This research was partially supported by the National Natural Science Foundation of China (11471289, 11162020).
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Theorem A (The Rapid-Jump Property of the
Derivative Near the Singular Straight Line). Sup-
pose that in a left (or right) neighborhood of a sin-
gular straight line there exist a family of periodic
orbits. Then, along a segment of every orbit near
the straight line, the derivative of the wave function
jumps down rapidly on a very short time interval.

Theorem B (Existence of Finite Time Interval of
Solution with Respect to Wave Variable in the
Positive or Negative Direction). For a singular non-
linear traveling wave system of the first class with
possible change of the wave variable, if an orbit
transversely intersects with a singular straight line
at a point or it approaches a singular straight line,
but the derivative tends to infinity, then it only takes
a finite time interval to make the moving point of
the orbit arrive on the singular straight line.

These two theorems tell us that for a nonlinear
wave equation, a peakon solution has a determined
geometric property. It depends on the existence of
a curve triangle surrounding a period annulus of a
center of the corresponding traveling wave system,
in the neighborhood of a singular straight line (see
[Li, 2013]). In fact, the curve triangle are the limit
curves of a family of periodic orbits of the traveling
wave system. It gives rise to a peakon profile of the
nonlinear wave equation.

For an example, as a shallow water model, the
generalized Camassa–Holm (CH) equation with real
parameters k, α

ut + kux − uxxt + αuux = 2uxuxx + uuxxx (1)

has a one-peakon solution

u(x, t) = u(x − ct) = φ(ξ) = ce−
√

α
3
|ξ|, (2)

when α = 3
c (c− k) with c > 0, k < c, where c is the

wave velocity. Equation (1) has the traveling system

dφ

dξ
= y,

dy

dξ
=

−y2 + 2(k − c)φ + αφ2

2(φ − c)
, (3)

which has the following first integral:

H(φ, y) = (φ − c)y2 −
[
(k − c)φ2 +

1
3
αφ3

]
= h.

(4)

Figure 1(a) shows the phase portrait of system (3)
when α = 3

c (c − k). Corresponding to the curve
triangle enclosing the period annulus of the center
E1(

2(c−k)
α , 0), Fig. 1(b) shows the peakon profile of

Eq. (1) given by (2).
When k = 0, α = 3, Eq. (1) is the original

Camassa–Holm equation, it has one-peakon solu-
tion u(x, t) = ce−|x−ct|. On the basis of this solution
form, in [Beals et al., 1999], the authors investigated

0

0.5

1

1.5

2

–8 –6 –4 –2 2 4 6 8

(a) (b)

Fig. 1. The phase portraits of (3) and a peakon when α = 3
c (c− k). (a) Phase portrait of system (3) when α = 3

c (c− k) and
(b) peakon solution.
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the N -soliton solution of CH-equation of the form

u(x, t) =
N∑

j=1

pj(t)e−|x−qj(t)|, (5)

where the positions qj and amplitudes pj satisfy the
following system:

q̇j =
N∑

k=1

pke
−|qj−qk|,

ṗj = pj

N∑
k=1

pk sgn(qj − qk)e−|qj−qk|,

for j = 1, . . . , N.

(6)

In [Hone & Wang, 2008], the authors considered
the N -soliton solution of form (5) of the Novikov
equation [Novikov, 2009]:

ut − uxxt + 4u2ux = uuxuxx + u2uxxx, (7)

where

q̇j =
N∑

k=1

pkple
−|qj−qk|−|qj−ql|,

ṗj = pj

N∑
k=1

pkpl sgn(qj − qk)e−|qj−qk|−|qj−ql|,

for j = 1, . . . , N.

(8)

Unfortunately, we have showed in [Li, 2014]
that even though φ = pe(x−ct) and φ = pe−(x−ct) are
two traveling wave solutions of Eq. (7), they cannot
be combined to become the solution φ = pe−|x−ct|,
i.e. an one-peakon solution of Eq. (7).

In this paper, we shall show the following two
conclusions:

(1) Under different parameter conditions, one non-
linear wave equation can have different exact
one-peakon solutions.

(2) Different nonlinear wave equations can have dif-
ferent explicit exact one-peakon solutions.

Namely, there are various exact explicit one-
peakon solutions, which are different from the one-
peakon solution given by (2). Therefore, to investi-
gate N -peakon solutions for a given nonlinear wave
equation, we may need to consider other forms of
exact solutions, which is different from (5).

We consider the following four nonlinear wave
equations as examples.

(i) The generalized Camassa–Holm equation

ut + 2kux − uxxt +
1
2
[αu2 + βu3]x

= 2uxuxx + uuxxx. (9)

When β = 0, Eq. (9) is just Eq. (1).
(ii) The nonlinear dispersion equation K(m,n),

i.e.

ut + a(um)x + (un)xxx = 0, m, n ≥ 1, (10)

where m,n are integers, a is a real parameter
(see [Rosenau, 1997; Li & Liu, 2002]).

(iii) The two-component Hunter–Saxton (HS) sys-
tem with real parameters A,σ (see [Moon,
2013]):

utxx + 2σuxuxx + σuuxxx − ρρx + Aux = 0,

ρt + (ρu)x = 0,
(11)

where σ ∈ R and A ≥ 0. System (11) is the
short wave (or high-frequency) limit of the gen-
eralized two-component form of the Camassa–
Holm shallow water equations.

(iv) The two-component Camassa–Holm system
with real parameters k, α, e0 = ±1 (see
[Olver & Rosenau, 1996; Chen et al., 2006;
Chen et al., 2011; Li & Qiao, 2013]):

mt + σumx − Auxx + 2σmux

+ 3(1 − σ)uux + e0ρρx = 0,

ρt + (ρu)x = 0,

(12)

where m = u − α2uxx − k
2 .

The corresponding traveling wave systems of
Eqs. (9)–(12) have one or two singular straight
lines, respectively (see next sections below). Under
some particular parameter conditions, there exist
at least one family of periodic orbits surround-
ing a center such that the boundary curves of the
period annulus are a curve triangle including a
singular straight line (see the phase portraits in
the next sections). Applying the classical analy-
sis method, we can obtain the parametric repre-
sentations for these boundary curves. When we
take these curve triangles into account as the limit
curves of period annulus, these exact parametric
representations provide very good understanding of
the occurrence of peaked traveling wave solutions.
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Namely, the curve triangle gives rise to a solitary
cusp wave (peakon) solution.

This paper is organized as follows. In Secs. 2–5,
we discuss respectively the exact peakon solutions
for Eqs. (9)–(12).

2. Peakon Solutions of the
Generalized Camassa–Holm
Eq. (9)

Let u(x, t) = φ(x − ct). Then, Eq. (9) has the
traveling system

dφ

dξ
= y,

dy

dξ
=

−y2 + 2(k − c)φ + αφ2 + βφ3

2(φ − c)
.

(13)

Making the transformation dξ = (φ−c)dζ for φ �= c,
system (13) becomes

dφ

dζ
= y(φ − c),

dy

dζ
=

1
2
[−y2 + 2(k − c)φ + αφ2 + βφ3].

(14)

System (14) is an integrable cubic system,
which has the same invariant curve solutions as sys-
tem (13) and the same first integral

H(φ, y) = (φ − c)y2

−
[
(k − c)φ2 +

1
3
αφ3 +

1
4
βφ4

]

= h. (15)

Denote that

f(φ) = φ(βφ2 + αφ + 2(k − c)).

We assume that β �= 0. Then, for β > 0, α = 0
and 0 < k < c, f(φ) has three zeros at φ0 = 0 and

φb± = ±
√

2(c−k)
β . For β > 0, α �= 0, f(φ) has three

zeros at

φ0 = 0, φ1,2 =
1
2β

[−α ±
√

α2 − 8β(k − c)],

(φ1 > φ2),

when ∆ = α2 − 8β(k − c) > 0. Thus, system (14)
has three equilibrium points E1(φ1, 0), O(0, 0) and

E2(φ2, 0) for ∆ > 0. In the straight line φ = c, there
are two equilibrium points (c, Y±), where Y± =√

c(cα + 2(k − c) + βc2). For c > 0, ∆ > 0, the
condition c = φ1,2 implies that for a fixed pair (c, k),

(c2β + 2(k − c) + cα)(c2β + 2(k − c) − cα) = 0,

i.e. α < 0, β = −1
c
α +

2
c2

(c − k).

This equality follows also that Y± = 0.
Let M(φi, yi) be the coefficient matrix of the

linearized system of (14) at an equilibrium point
(φi, yi). We have

J(0, 0) = det M(0, 0) = c(k − c),

J(φ1,2, 0) = det M(φ1,2, 0)

=
1
2
(c − φ1,2)f ′(φ1,2),

J(c, Y±) = det M(c, Y±) = −Y 2
±.

(16)

By the theory in the planar dynamical systems, we
see from (16) that the equilibrium points (c, Y±) are
saddle points.

We denote that

hi = H(φi, 0) =
1
12

φ3
i (2α + 3βφi),

(i = 1, 2), ha = H(φa, 0),

h0 = H(0, 0) = 0,

hs = H(c, Y±) = −c2

[
(k − c) +

1
3
αc +

1
4
βc2

]
.

Thus, for c �= 0 and a fixed pair (c, k), hs = 0 if and
only if β = − 4

3cα + 4
c2

(c − k).
Assume that β > 0, c > 0. For a fixed pair

(c, k), we consider three cases c > k, c = k and
c < k, respectively. When c > k, we know that
φ2 < 0 < φ1 and the origin O(0, 0) is a saddle
point. When c = k, if α �= 0, the origin O(0, 0)
is a cusp point. There is another equilibrium point
E2(−α

β , 0) of system (14). When c < k, if α �= 0,
the origin O(0, 0) is a center point. Under different
parameter conditions, we have six phase portraits
of system (14) shown in Figs. 2(a)–2(f), for which
there exist heteroclinic triangle loops of system (14)
surrounding a period annulus of a center. By The-
orem A, near the straight line φ = c, the variable
“ζ” is a fast variable while the variable “ξ” is a
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Fig. 2. Some phase portraits of system (14) when β > 0 and c > 0. Parameter conditions: (a) β = − 4α
3c + 4

c2 (c−k), (b) α < 0,

β = − 4α
3c , (c) Y+ > 0, H(φ1, 0) = H(c, Y±), (d) ∆ = 0, H(φ1, 0) = H(c, Y±), (e) α < − 4(k−c)

c , Y+ > 0, H(φ2, 0) = H(c, y±)

and (f) − 4(k−c)
c < α < 0, Y+ > 0, H(φ1, 0) = H(c, Y±).
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Fig. 2. (Continued)

slow variable in the sense of the geometric singular
perturbation theory.

We now discuss the exact peakon solutions of
Eq. (9).

(i) When c > k, β = 4(cα+3(k−c))
3c2

, two hetero-
clinic orbits of system (14) in Fig. 2(a) given by
H(φ, y) = 0 can be written as y2 = 1

4βφ2(φ +
φm), where φm is the φ-coordinate of the inter-
section point of the homoclinic orbit defined
by H(φ, y) = 0 with the φ-axis. If α = 0,
φm = −4(c−k)

β , by using the first equation
of (13) to integrate and taking the initial value
as φ(0) = c by Theorem B, we obtain the fol-
lowing peakon solution of Eq. (9):

φ(ξ) = (−φm)csch2

(
1
2

√
c − kξ − Ω0

)
,

for ξ ∈ (−∞, 0),

φ(ξ) = (−φm)csch2

(
1
2

√
c − kξ + Ω0

)
,

for ξ ∈ (0,∞),

(17)

where Ω0 = ctnh−1
√

c−φm

(−φm) .

(ii) When α < 0, c = k > 0, β = −4α
3c , two hetero-

clinic orbits of system (14) in Fig. 2(b) given
by H(φ, y) = 0 can be written as y2 = 1

4βφ3.

Thus, corresponding to this curve triangle, we
have the peakon solution of Eq. (9) as follows:

φ(ξ) =
4(

2√
c
− 1

2
βξ

)2 , for ξ ∈ (−∞, 0),

φ(ξ) =
4(

2√
c

+
1
2
βξ

)2 , for ξ ∈ (0,∞).

(18)

Clearly, by moving the saddle to the origin, for
the three cases in Figs. 2(c), 2(e) and 2(d), we
can obtain similar results as (17) and (18).

(iii) When c < k, −4(k−c)
c < α < 0, Y+ > 0,

H(φ1, 0) = H(c, Y±), two heteroclinic orbits
of system (14) in Fig. 2(f) given by H(φ, y) =
hs = h1 can be written as

y2 =
1
4
β

(
φ3 +

4α + 3cβ
3β

φ2 + a1φ + ca1

)

=
1
4
β(φ1 − φ)2(φ − φm),

where

a1 = c

(
4α + 3cβ

3β

)
+

4(k − c)
β

,

φm = −α + 3cβ + 3
√

∆
3β

.
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Fig. 3. Three peakon profiles of Eq. (9) when β > 0 and c > 0.
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Hence, corresponding to this curve triangle, we
have the peakon solution of Eq. (9) as follows:

φ(ξ) = φ1 + φmsech2(ω0ξ + Ω1),

for ξ ∈ (0,∞),

φ(ξ) = φ1 + φmsech2(ω0ξ − Ω1),

for ξ ∈ (−∞, 0),

(19)

where

ω0 =
1
4

√
β(φ1 − φm),

Ω1 = tanh−1

√
c − φm

φ1 − φm
.

Figures 3(a)–3(c) show the peakon profiles
given by (17)–(19), respectively.

From the above discussion, we have the follow-
ing conclusion.

Theorem 1. Equation (9) has three different exact
explicit peakon solutions given by (17)–(19), respec-
tively. The corresponding peakon profiles are shown
in Figs. 3(a)–3(c).

3. Peakon Solutions of the
Nonlinear Dispersion Equation
K(m, n)

Corresponding to Eq. (10), it has the following
traveling system (see [Rosenau, 1997]):

dφ

dξ
= y,

dy

dξ
=

−n(n − 1)φn−2y2 − aφm + cφ + g

nφn−1
,

(20)(m,n)

which has the first integral

H(φ, y) = φn

(
nφn−2y2 +

2a
m + n

φm

− 2c
n + 1

φ − 2g
n

)

= h. (21)

Letting dξ = nφn−1dζ, system (20) becomes the
following system

dφ

dζ
= nyφn−1,

dy

dζ
= −n(n − 1)φn−2y2 − aφm + cφ + g.

(22)

On the (φ, y)-phase plane, the abscissas of equi-
librium points of system (22) on the φ-axis are the
zeros of E(φ) = aφm − cφ − g. When n = 2, there
are two equilibrium points of (22) at Y−(0,−√

0.5g)
and Y+(0,

√
0.5g) on y-axis if g > 0. When n > 2,

system (22) has no equilibrium on the y-axis if
g �= 0. Noting that E′(φ) = amφm−1 − c, for
an odd m and ac > 0, E′(φ) has two zeros at
φ̃± = ±( c

am)
1

m−1 ; for an even m, E′(φ) has only
one zero at φ̃+. Clearly, E(φ̃+) = −(m−1

m cφ̃+ + g).
By using this information, we know the distribu-
tions of the zeros of E(φ) on the φ-axis. Let(φe, ye)
be an equilibrium of system (22). At this point, the
determinant of the linearized system of system (22)
has the form

J(φe, ye) = −n3(n − 1)φ2(n−2)
e y2

e + nφn−1
e E′(φe).

It is clear that for n = 2, two equilibrium points
on the y-axis are saddle points. As to the equi-
librium (φe, 0) on the x-axis, it is a center (or a
saddle point), if φn−1

e E′(φe) > 0(or < 0). When
E(φ) has two zeros on the φ-axis, we denote them
as φej , j = 1, 2, φe1 < φe2. Write that

h1 = H(φe1, 0), h2 = H(φe2, 0),

hs = H(0,±√
0.5g) = 0,

where H is defined by (21).
By using the above facts to do qualitative anal-

ysis, we obtain the following results.

(1) For equation K(2, 2k), when a < 0, g > 0,
c = 6k( |a|

2(k+1) )
1
2k ( g

2(2k−1))
2k−1
2k , there exist a hete-

roclinic loop of system (22). Taking k = 1, 2, we
have the two phase portraits of system (22) shown
in Figs. 4(a) and 4(b).

(2) For equation K(2, 2k + 1), when a > 0, c > 0,
g = 4k

2k+3(a)−
1
2k ( (2k+3)c

3(2k+1) )
2k+1
2k , there exist a hetero-

clinic loop of system (22). Taking k = 1, we have the
phase portraits of system (22) shown in Fig. 4(c).

We next consider the exact peakon solutions.

(i) K(2, 2) peakon.

For m = n = 2, when a < 0, g > 0 and
c = 3

2

√
2|a|g, we have the phase portrait Fig. 4(a).

By (21) with h = 0, we know that the upper
and lower straight lines of the boundary triangle
of the periodic annulus with center C( c

3a , 0) are

y = ±
√

|a|
2 (φ − 2c

3a). By using the first equation of
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Fig. 4. Three phase portraits of system (22).
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(a) K(2, 2) peakon (b) K(4, 2) peakon
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xi

(c) K(3, 2) peakon

Fig. 5. Three peakon profiles of Eq. (10).
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Variform Exact One-Peakon Solutions for Some Singular NTW Equations

system (20), we obtain following parametric representations:

φ(ξ) =
2c
3a

(
1 − exp

(
−
√|a|

2
ξ

))
, for ξ ∈ (0,∞),

φ(ξ) =
2c
3a

(
1 − exp

(√|a|
2

ξ

))
, for ξ ∈ (−∞, 0).

(23)

(ii) K(4, 2) peakon.

When m = 4, n = 2, a < 0, g > 0 and c = 2|a| 14 g
3
4 , system (20)(4,2) has two connecting orbits to saddle

point S(φ1, 0), where φ1 = −( g
|a|)

1
4 in Fig. 4(b). By (21) with h = 0, the upper and lower boundary curves of

the period annulus of center C are y = ±
√

|a|
6 (φ−φ1)

√
φ2 + 2φ1φ + 3φ2

1. Thus, by using the first equation
of system (20), we obtain the following parametric representations:

φ(ξ) = φ1 +
12(3

√
2 + 4)|φ1|

(3
√

2 + 4)2e−
q

|a|
6
|φ1|ξ − 2e

q
|a|
6
|φ1|ξ + 4(3

√
2 + 4)

, for ξ ∈ (−∞, 0),

φ(ξ) = φ1 +
12(3

√
2 + 4)|φ1|

(3
√

2 + 4)2e
q

|a|
6
|φ1|ξ − 2e−

q
|a|
6
|φ1|ξ + 4(3

√
2 + 4)

, for ξ ∈ (0,∞).

(24)

(iii) K(3, 2) peakon.

When m = 3, n = 2, a > 0, g > 0, c = 4
5a−

1
2 ×

(5
9c)

3
2 , system (20)(3,2) has three equilibrium points

S1(φ1, 0), C1(φ2, 0) and C2(φ3, 0) in Fig. 4(c), where

φ1 = −1
3

√
5c
a , φ2 = −1

6(
√

21 − √
5)
√

c
a , φ3 =

1
6(
√

21 +
√

5)
√

c
a . By (21) with h = 0, the upper

and lower boundary curves of the period annulus of
center C1 are y = ±√a

5 (φ − φ1)(φM − φ), where

φM = 2
3

√
5c
a = 2|φ1|. By using the first equation

of system (20), we obtain the following parametric
representations:

φ(ξ) = φM − (φM − φ1) tanh2

(
1
2
√

cξ − Ω1

)
,

for ξ ∈ (−∞, 0),

φ(ξ) = φM − (φM − φ1) tanh2

(
1
2
√

cξ + Ω1

)
,

for ξ ∈ (0,∞),
(25)

where Ω1 = tanh−1
√

2
3 .

We use Figs. 5(a)–5(c) to show the peakon
profiles given by (23)–(25), respectively. Hence,

we have

Theorem 2. Corresponding to K(2, 2),K(4, 2) and
K(3, 2), Eq. (10) has three different exact explicit
peakon solutions given by (23)–(25), respectively.
The profiles of peakon solutions are shown in
Figs. 5(a)–5(c), respectively.

4. Peakon Solutions of the
Two-Component Hunter–Saxton
System (11)

Let u(x, t) = φ(x− ct) = φ(ξ), ρ(x, t) = v(x− ct) =
v(ξ), where c is the wave speed. Then, the second
equation of (11) becomes −cv′+(vφ)′ = 0, where “′”
stands for the derivative with respect to ξ. Integrat-
ing this equation once and setting the integration
constant as B, B �= 0, it follows that v(ξ) = B

φ−c .

The first equation of (11) reads as

−cφ′′′ + Aφ′ + σ

[
1
2
(φ′)2 + φφ′′

]′
− vv′ = 0.

Integrating this equation yields

(σφ − c)φ′′ = −1
2
σ(φ′)2 − Aφ +

B2

2(φ − c)2
− 1

2
g,

where 1
2g is an integration constant. This equa-

tion is equivalent to the following two-dimensional
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system:

dφ

dξ
= y,

dy

dξ
=

−σy2(φ − c)2 − (φ − c)2(2Aφ + g) + B2

2(φ − c)2(σφ − c)
,

(26)

which has the following first integral:

H(φ, y) = y2(σφ − c) + Aφ2 + gφ +
B2

(φ − c)

= h. (27)

Assume that A > 0, c > 0. Imposing the trans-
formation dξ = (φ − c)2(σφ − c)dζ for φ �= c, c

σ on
system (26) leads to the following associated regular
system:

dφ

dζ
= y(φ − c)2(σφ − c),

dy

dζ
= −1

2
σy2(φ − c)2

− 1
2
[(φ − c)2(2Aφ + g) − B2].

(28)

This system has the same first integral as (26).
Apparently, two singular lines φ = c and φ = c

σ
are two invariant straight line solutions of (28). To
see the equilibrium points of (28), we write that

f(φ) = (φ − c)2(2Aφ + g) − B2

= 2A
(

φ3 +
g − 4Ac

2A
φ2

+
2c2A − 2cg

2A
φ +

c2g − B2

2A

)

≡ 2A(φ3 + a2φ
2 + a1φ + a0),

f ′(φ) = 2(φ − c)(3Aφ + g − Ac),

f ′′(φ) = 2(6Aφ + g − 4Ac).

Clearly, f ′(φ) has two zeros at φ = φs1 = c and
φ = φ̃ = Ac−g

3A . In addition, we have f(c) = −B2,
f ′(c) = 0 and f ′′(c) = 2(2cA + g), f(0) = gc2 −B2.

Let q = 1
3a1 − 1

9a2
2, r = 1

6(a1a2 − 3a0) −
1
27a3

2. Then, the discriminant S = q3 + r2 of the
cubic polynomial f(φ) = 0 is S = − B2

432A4 S1 =
− B2

432A4 (8A3c3 + g3 + 12A2c2g + 6Acg2 − 27A2B2).

It is easy to see that for given A,B2, c, when g >

g1 ≡ 3(A2B2)
1
3 − 2Ac, we have S1 > 0. It follows

that there exist three simple real roots φj (j = 1,
2, 3) of f(φ) satisfying φ1 < φ̃ < φ2 < c < φ3. When
g = g1, there exist two real roots φ12 and φ3 of f(φ)
satisfying φ12 = φ̃ = c − A− 1

3 B
2
3 < c < φ3.

In the φ-axis, the equilibrium points Ej(φj , 0)
of (6) satisfy f(φj) = 0. Obviously, system (28) has
at most three equilibrium points at Ej(φj , 0), j =
1, 2, 3. On the straight line φ = c, there is no equilib-
rium point of (28) if B �= 0. On the straight line φ =
c
σ , there exist two equilibrium points S∓( c

σ ,∓Ys)

of (28) with Ys =
√

−f( c
σ

)

σ( c
σ
−c)2

, if σf( c
σ ) < 0.

Let M(φj , yj) be the coefficient matrix of the
linearized system of (28) at an equilibrium point
Ej(φj , yj). We have

J(φj , 0) = det M(φj , 0)

= 2(φj − c)2(σφj − c)f ′(φj),

J
( c

σ
,∓Ys

)
= det M

( c

σ
,∓Ys

)

= −σ2Y 2
s

( c

σ
− c
)4

.

The sign of f ′(φj) and the relative positions of
the equilibrium points Ej(φj , 0) of (28) with respect
to two singular lines φ = c and φ = c

σ can determine
the types (saddle points or centers) of the equilib-
rium points Ej(φj , 0). When σ �= 0, two equilibrium
points S∓( c

σ ,∓Ys) are saddle points.
Let hi = H(φi, 0) and hs = H( c

σ ,∓Ys), where
H is given by (27).

For a given wave speed c > 0 and parameters
A > 0, B2 > 0, we assume that the following con-
dition holds: (H1) g > g1 ≡ 3(A2B2)

1
3 − 2Ac.

Under condition (H1), system (6) has three sim-
ple equilibrium points Ej(φj , 0), j = 1, 2, 3 with
φ1 < φ̃ < φ2 < c < φ3. Notice that for every j = 1,
2, 3, φj does not depend on the parameter σ.

It is easy to see that for a given positive param-
eter group of (A,B2, c) and g > 3(A2B2)

1
3 − 2Ac,

under the parameter condition: 1 < σ = σ∗ =
Ac

Ac−g−2Aφ1
, we have hs = h1 < h2 < h3. Thus,

we obtain the phase portrait of (28) as shown in
Fig. 6(a).

Corresponding to the heteroclinic orbit loop
of (6) connecting three saddle points E1(φ1, 0), S∓
and enclosing the center E2(φ2, 0) in Fig. 6(a), the
first integral H(φ, y) = hs = h1 can be written in
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Fig. 6. A peakon solution defined by formula (29). (a) The phase portrait of system (28) and (b) a peakon solution
of Eq. (11).

the form

y2 =
1

σ(c − φ)

×

 B2(

c − c

σ

) − (c − φ)
(

Aφ +
Ac

σ
+ g

)

=
A

σ(c − φ)
(φ − φ1)2.

Hence, by using the first equation of system (26) to
integrate, along the heteroclinic orbits E1S+ and
E1S−, we have

∫ c
σ

φ

(c − φ)dφ

(φ − φ1)
√

c − φ
= ±

√
A

σ
ξ.

Thus, we obtain

φ(χ) = c − (c − φ1) tanh2(χ),

χ ∈ (−∞,−χ0) ∪ (χ0,∞)

ξ(χ) = −
√

σ

A
[
√

c − φ1(χ − tanh(χ)) − ξ0],

(29)

where χ0 = arctanh
√

c− c
σ

c−φ1
, ξ0 = 2

√
c − φ1χ0 −

2
√

c − c
σ . Equation (29) gives rise to peakon

solution of Eq. (11). The wave profile is shown in
Fig. 6(b).

To sum up, we have

Theorem 3. For a given positive parameter group
(A,B2, c), when g > g1 ≡ 3(A2B2)

1
3 − 2Ac,

system (28) has three real equilibrium points
Ej(φj , 0), j = 1, 2, 3 satisfying φ1 < φ̃ < φ2 <
c < φ3. When σ = σ∗, corresponding to the hetero-
clinic loop of system (28), Eqs. (11) has a peakon
solution given by (29).

5. Peakon Solutions of the
Two-Component Camassa–Holm
System (12)

Let u(x, t) = φ(x− ct) = φ(ξ), ρ(x, t) = v(x− ct) =
v(ξ), where c is the wave speed. Then, the sec-
ond equation of (12) becomes −cv′ + (vφ)′ = 0,
where “′” stands for the derivative with respect
to ξ. Integrating this equation once and setting the
integration constant as B, B �= 0, it follows that
v(ξ) = B

φ−c . The first equation of (12) reads as

−cφ′′′ = −(A + c)φ′ + 3φφ′

−σ

[
1
2
(φ′)2 + φφ′′

]′
+ e0vv′.
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Integrating this equation yields

(σφ − c)φ′′ = −1
2
σ(φ′)2 − (A + c)φ +

3
2
φ2 +

e0B
2

2(φ − c)2
− 1

2
g,

where g is an integration constant. The above equation is equivalent to the following two-dimensional
system:

dφ

dξ
= y,

dy

dξ
=

−σy2(φ − c)2 + (φ − c)2[3φ2 − 2(A + c)φ − g] + e0B
2

2(φ − c)2(σφ − c)
, (30)

which admits the following first integral:

H(φ, y) = y2(σφ − c) − φ3 + (A + c)φ2

+ gφ +
e0B

2

(φ − c)
= h. (31)

For a given wave speed c > 0, system (31) is a
four-parameter planar dynamical system with the
parameter tuple (A,B, g, σ).

Assume A > 0. Imposing the transformation
dξ = (φ − c)2(σφ − c)dζ for φ �= c, c

σ on sys-
tem (30) with e0 = ±1, leads to the following regu-
lar system:

dφ

dζ
= y(φ − c)2(σφ − c),

dy

dζ
= −1

2
σy2(φ − c)2 +

1
2
[(φ − c)2

× (3φ2 − 2(A + c)φ − g) + e0B
2].

(32)

Apparently, two singular lines φ = c and φ = c
σ

are two invariant straight line solutions of (32).
To see the equilibrium points of (32), let us

mark and calculate the following

f(φ) = (φ − c)2(3φ2 − 2(A + c)φ − g) + e0B
2,

f ′(φ) = 2(φ − c)[6φ2 − 3(A + 2c)φ + c(A + c) − g],

f ′′(φ) = 2(18φ2 − 6(A + 4c)φ + c(4A + 7c) − 2g.

Apparently, f ′(φ) has one zero at φ = φs1 = c.
When ∆ = 9A2 + 12Ac + 12c2 + 24g > 0, f ′(φ)
has two zeros at φ = φ̃1,2 = 1

12 [3(A + 2c) ∓ √
∆].

So, we have f(c) = e0B
2, f ′(c) = 0 and f ′′(c) =

2(c2 − 2cA − g), f(0) = e0B
2 − gc2.

In the φ-axis, the equilibrium points Ej(φj , 0)
of (32) satisfy f(φj) = 0. Geometrically, for a fixed
c > 0, the real zeros φj (j = 1, 2 or j = 1, 2, 3, 4) of
the function f(φ) can be determined by the intersec-
tion points of the quadratic curve y = 3φ2 − 2(A +
c)φ − g and the hyperbola y = − e0B2

(φ−c)2 . Obviously,
system (32) has at most four equilibrium points at
Ej(φj , 0), j = 1, 2, 3, 4. On the straight line φ = c,
there is no equilibrium point of (32) if B �= 0. On
the straight line φ = c

σ , there exist two equilibrium

points S∓( c
σ ,∓Ys) of (32) with Ys =

√
f( c

σ
)

σ( c
σ
−c)2

, if

σf( c
σ ) > 0.
Next we assume that e0 = 1. Let hi = H(φi, 0)

and hs = H( c
σ ,∓Ys), where H is given by (31).

For a given wave speed c > 0, assume that one
of the following two conditions holds:

(1) g > 0, c < A +
√

A2 + g. For given A and g,
f(φ̃1) < 0, f(φ̃2) < 0.

(2) g < 0, A2 + 4g > 0, A −
√

A2 + g < c <

A +
√

A2 + g. For given A and g, f(φ̃1) <

0, f(φ̃2) < 0.

Then, Eq. (32) has four simple equilibrium
points Ej(φj , 0), j = 1, 2, 3, 4, satisfying φ1 < φ̃1 <

φ2 < c < φ3 < φ̃2 < φ4.
Suppose that σ < 1. Under the conditions h1 <

h2 < hs = h3 < h4, φ4 < c
σ , we have the following

phase portrait of Eq. (32) shown in Fig. 7(a).
We now investigate exact parametric represen-

tations of the two heteroclinic orbits of (32) defined
through H(φ, y) = h3 = hs in Fig. 7(a). By (31),
we know that for a fixed integral constant h,

y2 =
(φ − c)[φ3 − (A + 2c)φ2 − gφ + h] − eB2

(φ − c)(σφ − c)

≡ G(φ)
(φ − c)(σφ − c)

=
φ4 − (A + 2c)φ3 + (c2 + Ac − g)φ2 + (h + cg)φ − (ch + eB2)

(φ − c)(σφ − c)
.

In the case of Fig. 7(a), function G(φ) can be written as G(φ) = ( c
σ − φ)(φ − φ3)2(φ − φl).
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Fig. 7. A peakon solution defined by formulas (27). (a) The phase portrait of system (32) and (b) a peakon solution of
Eq. (12).

Hence, taking integrals along the heteroclinic orbits E3S+ and E3S−, choosing initial value φ(0) = c
σ ,

by Theorem B, we arrive at

± ξ√
σ

=
∫ φ

c
σ

dφ√
(φ − c)(φ − φl)

+ (φ3 − c)
∫ φ

c
σ

dφ

(φ − φ3)
√

(φ − c)(φ − φl)
. (33)

Thus, we obtain a new peakon solution of (12) as follows:

φ(χ) =
B0

2

[
eχ +

(
c − φl

2B0

)2

e−χ +
c + φl

B0

]
, χ ∈ (−∞, 0]

ξ(χ) =
√

σ


χ −

√
φ3 − c

φ3 − φl
ln

(√
X(φ(χ) − φ3) +

√
X(φ3)

φ(χ) − φ3
+

2φ3 − c − φl

2
√

X(φ3)

)
+ B1




(34)

and

φ(χ) =
B0

2

[
e−χ +

(
c − φl

2B0

)2

eχ +
c + φl

B0

]
, χ ∈ [0,∞),

ξ(χ) =
√

σ


χ +

√
φ3 − c

φ3 − φl
ln

(√
X(φ(χ) − φ3) +

√
X(φ3)

φ(χ) − φ3
+

2φ3 − c − φl

2
√

X(φ3)

)
− B1


,

(35)
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where

X(φ) = (φ − c)(φ − φl), B0 =
√

X
( c

σ

)
+

c

σ
− 1

2
(c + φl),

B1 =

√
φ3 − c

φ3 − φl
ln



√

X
( c

σ
− φ3

)
+
√

X(φ3)

c

σ
− φ3

+
2φ3 − c − φl

2
√

X(φ3)


.

In a summary, we obtain the following result.

Theorem 4. Suppose that the traveling wave sys-
tem (30) of Eqs. (12) satisfies the parameter con-
dition σ < 0, g > 0, c < A +

√
A2 + g and for

given A and g, f(φ̃1) < 0, f(φ̃2) < 0. Then, when
h1 < h2 < hs = h3 < h4, φ4 < c

σ , corresponding
to the heteroclinic loop of system (32) defined by
H(φ, y) = hs in (31), formulas (34) and (35) give
rise to a peakon solution of Eqs. (12).
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