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The context

Basic tools

A planar polynomial differential system X of degree d in C2:

x=p(x,y), y=a(xy). (1)
A first integral is H such that

oH  OH
XH = p+ag, =0

An invariant algebraic curve if f = 0 such that

of of
— Kf.
P + q@y

k is the cofactor of f = 0.
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One place at infinity

@ Let L: {Z = 0} be the infinity line.

@ Let C: {F(X,Y,Z)=0}. C has only one place at infinity if
CnL={P} and C is reduced and unibranch at P.

@ H=T[i_, f"is a well-behaved at infinity (WAI) function if
F; = Z9%f(X/Z, Y/Z) has only one place at infinity.

@ We define

_ =L
H(X,Y.Z) = H’:Z‘n =

where n="7_, din;.
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The question(s)

The Catalan way of asking about things

@ Does X has a WAI polynomial first integral? (Y/N)

Q In the affirmative case, can we compute a minimal WAI
polynomial first integral? (Y/N)

NOTE: Even if we answer YES to both questions, nothing seems to happen.
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PVF in CP?

Vector fields and invariant algebraic curves

The 1-form Q = AdX + BdY + CdZ of degree d + 1 is
projective if XA+ YB + ZC = 0.

Let P, Q, and R of degree d such that
A=2Q—- YR, B=XR-ZP, C=YP - XQ.

(P, Q, R) can be thought of as a homogeneous polynomial
vector field in CP? of degree d:

) 0
52 = Pa—X+Q—+RaZ

F(X,Y,Z)=0is invariant for X if

oF 8F
AF = Pa—X+Q—+ 97 = KF.
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Vector fields and invariant algebraic curves

@ The 1-form p(x, y)dy — q(x, y)dx can be extended to CP?:
Z9(p(YdZ — ZdY) — q(XdZ — ZdX)).

n=degfeN = K=29"1k(X/Z,Y/2)

. { fx.y) =0 { F—Z2f(X/Z,Y/Z) =0
k(x,y)
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PVF in CP?

Vector fields and invariant algebraic curves

@ The 1-form p(x, y)dy — q(x, y)dx can be extended to CP?:
Z9(p(YdZ — ZdY) — q(XdZ — ZdX)).

n=degfeN = d—1
K =2Z91K(X/2,Y/Z
k(x.y) il

. { FIX,Y,2)=0 { f(x,y) = F(X, ¥,1) =0

f(Xa ):0 n
. { { F—Zf(X/Z,Y/Z) =0

n=degF -
K(X,Y,2) k(x,y) = K(x,y,1) — nR(x,y, 1)
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PVF in CP?

Vector fields and invariant algebraic curves

@ The 1-form p(x, y)dy — q(x, y)dx can be extended to CP?:

79 (p(YdZ — ZdY) — g(XdZ — ZdX)).

i) =t F=2"(X/2,Y/Z) =
L n=degfeN = : )
{ k(x,y) { K=2Z9"k(X/Z,Y/2)
P 2)=0  ( fxy) = FX, v, 1) =0
’ { Z(j(?es%,,;) j{ k(x,y) = K(x,y,1) — nR(x,y,1)

° (P(X Y, ) XR(X Y, ))dy—(Q(X,y,1)—yH(X,y,1))dX.)
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Blow-up. Singularities

The blow-up technique

Blowing-up a singular point P

q(x, x2) - 2p(x, x2).

VP s p(yz,y) — zq(yz,y)
y
The exceptional divisor Ep : {x = 0} (resp. {y = 0}).
The projection map

X

;o y=qz,y).

Mp BLP(M) - M
(x,2) — (x,x2)

from which Ep = M5 (P).
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Blow-up. Singularities

Reduction of singularities

@ From w = pdy — g dx we have wy = pm dy — gm dx.
@ Let Mg : Blp(C?) — C2 and charts (V2, ¢;).
@ The total transform by Mg of win VP is
W*|v10 = x"[(a(1,2) + xB(x, 2))dx
+ x(pm(1, 2) + xy(x, 2))dz],
where a(X, y) = ypm(X, ¥) — xqm(X, y).

@ The strict transform by Mo of win V1O is
Blyo = w*|V1o/xer1 if o = 0 (resp. = w*|y0/x™ if & # 0).

@ From &|,0 we construct a 1-form & on Blp(C2).

@ From X', M, P we can obtain X in Blp(M).
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Blow-up. Singularities

Reduction of singularities

Types of singular points

@ Ois adicritical singular point if « = 0.
@ Ois non-dicritical if and only if Eg is invariant.

@ Ois simpleif m= 1 and <p1x p1y> has EV A1, Ao s.t.

qix Cﬁy
A =0+#X0r3l ¢QF.
@ Ois ordinary if it is not simple (includes dicritical).

Some observations

@ Simple singular points cannot be reduced.

@ Ordinary singular points can be reduced (by a finite
sequence of BU) s.t. the strict transform X in the last
obtained complex manifold has no ordinary singularities.

A. Ferragut
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Blow-up. Singularities

Reduction of singularities

Neighbors

@ Ep is the first infinitesimal neighborhood of P.

@ The i-th infinitesimal neighborhood of P is formed by the
points on the first infinitesimal neighborhood of some point
in the (i — 1)-th infinitesimal neighborhood of P.
They are infinitely near to P.

@ Qis proximate to P if it belongs to the strict transform of
Ep.

@ Qis a satellite if it is proximate to two points. Otherwise it
is free.

@ Rprecedes Qif Qs infinitely near to R.
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Blow-up. Singularities

Reduction of singularities

Configurations of infinitely near points

@ A configurationis C = {Qy, ..., Qn} such that
Qo € Xo =M, Q; € Blg,_,(Xi—1) = Xi = Xj_1.
@ We can construct the proximity graph I'c.
@ The singular configuration S(X) = |Jp Sp(X), P ordinary.

@ The dicritical configuration
D(X) ={P e S(X):3Q € S(X) infinitely near dicritical
singularity }.

A. Ferragut



Blow-up. Singularities

An example!

Example

Let X be the vector field

2XZ* dX +5Y*Z dY

— (5Y° +2X22%)dz,
o " P=(1:0:0),
with singularities {Q —(0:0:1).

We have
S(x)={P,Qyu{P}3 u{Q},,
D(X) = {P}U{P}3,.

9Py 9Qs

A. Ferragut




Linear systems. Clusters

Contents

@ Linear systems. Clusters

A. Ferragut



Linear systems. Clusters

Linear systems




Linear systems. Clusters

Linear systems

@ A linear system on CP? is the set of algebraic curves given
by a linear subspace of Cp[X, Y, Z] U {0}.

If it has dimension 1, then it is a pencil.
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Linear systems. Clusters

Linear systems

@ A linear system on CP? is the set of algebraic curves given
by a linear subspace of Cp[X, Y, Z] U {0}.
If it has dimension 1, then it is a pencil.

@ A cluster of CP? is (C,m) where C = (Qq,..., Q) is a
configuration and m = (mg, ..., mp), m; € N.
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Linear systems. Clusters

Linear systems constructed from clusters

Virtual transform

Set £ = (C,m) acluster and C : {f = 0} an algebraic curve.
o If Qx €C, let £(Qk) = #{Q; € C| Q is infinitely near to Q;}.
@ Case /(Qx) = 1: the virtual transform Cg is f(x,y) = 0.

o C passes virtually through Qx if mq, (Cf, ) > mi.
@ Case /(Qx) > 1: Qcinthe 1IN of Q; € C and C passes
virtually through Q;.

@ f(x,y) = 0 alocal equation of C’Cj; Qc=(0,)) € V1O".
@ The virtual transform CSK at Qc: x~Mif (x,x(t+ \)) = 0.

® C passes virtually through Q if mq, (Cg, ) > mk.

@ C passes virtually through K if it passes virtually through
all @ e K.
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Linear systems. Clusters

Linear systems constructed from clusters

The strict transform C of C is the global curve given by the
virtual transform through the cluster of points and multiplicities
defined by the curve.

The linear system L(K) determined by m € N and K is the
linear system on CP? given by those curves defined by
polynomials in Cpy[X, Y, Z] U {0} that pass virtually through K.
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Linear systems. Clusters

An example

Consider the cluster £ = (C, m), where
0 C={Q,P,P1,P},m=(2,2,1,1);
@ P=(0:0:1),Q=(1:0:1);0r(0,0),(1,0)in Z#0.
@ P =(0,3)c VP, P,=(1,0) ¢ V,f1 infinitely near to P.
Let us compute L3(K).
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Linear systems. Clusters

An example

Let C € £3(K) be

aXxX® + bX2Y + cX?Z + dXY? + eXYZ
+ XZ% + gY® + hY2Z + iYZ? + kZ°,

Consider it in the local chart Z # 0.
@ The multiplicity of C at P must be at least 2, then

f=i=k=0.
@ The multiplicity of C at Q must be at least2, soa=c =0
and b= —e.
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Linear systems. Clusters

An example

The local equation defining the virtual transform of C at P;,
CkK ,is
1

3(e+3h)+ (9d —3e+27g)x; + (e + 6h)y;
+(6d — e +279)xiy1 + hyf + (d +9g)x1yf + gxiy? =0

in coordinates (x1 = X,y = y/X).

@ The multiplicity of C,’§1 at P; must be at least 1, then
e = —3h.

A. Ferragut



Linear systems. Clusters

An example

The local equation of the virtual transform of C at P is

3h+ (9d + 27g + 9h) x> + hy»
+ (6d +27g + 3h)xoy2 + (d + 99)Xoy5 + gxays = 0,
where xo = xq/y; and y» = y;.
Q C§2 passes virtually through P» if and only if h = 0.

Hence the curves in £3(K) are defined by Y?(aX + 8Y) =0,
for (a, 8) € C2\ {(0,0)}.
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Linear systems. Clusters

Cluster of base points

Let BP(L) be the configuration of points such that all the
generic curves of £ have the same multiplicities multg(L£) at
every point Q € BP(L) and empty intersection at the manifold
obtained by blowing-up these points.

Let m = (multo(£))qenp(c)-
We have the cluster of base points (BP (L), m).
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Linear systems. Clusters

An example

Example
Back to
2XZ* dX +5Y*Z dY .
—(5Y° +2X22%)dz,
consider £ defined by .
a(X2Z8 + Y8) + BZ5 = 0. o
The cluster of base points of £ is I o
(D(X),(3,2,1,...,1)). £ S b

A. Ferragut



Linear systems. Clusters

Cluster of base points

Proposition
If £ is a pencil, then

BP(L) = D(X¢),

where X, is the vector field with invariant curves given by L.
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Linear systems. Clusters

Cluster of base points

If £ is a pencil, then

BP(L) = D(X¢),

where X, is the vector field with invariant curves given by L.

o Let Py =P(F"---F",Z") (& H).
@ We have Py = ﬁn(B'P;\{).
@ We can compute H from BPy and n.

A. Ferragut
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First main result

Consider X' having a WAI PFI H = []7_, f".
@ D(X) = BP(Px).
@ D(X) has exactly r maximal points R;. They are the unique
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First main result

Consider X' having a WAI PFI H = []7_, f".
@ D(X) = BP(Px).
@ D(X) has exactly r maximal points R;. They are the unique
dicritical singularities of X.
@ The set Fr(D(X)) of free points of D(X) has exactly r
maximal elements M;. Moreover, R; is infinitely near to M;.
@ The degree of F; can be obtained from:

e M; and the points of D(X') to which M; is infinitely near.
e A convenient set of multiplicities.

A. Ferragut
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Second main result

@ Lis invariant and contains D(X) N P2.

@ R; are the unique IN dicritical singularities of X'.

@ MFr(D(X)) = {My,...,M}.

@ For each i there exists C; associated to M; of degree d;
computable.

@ After some computations (skipped), n; € N are obtained.

e If C;: {fi(x,y) =0} then []i_, £ is a WAI PFI.

A. Ferragut
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Second main result

Corollary

@ nand n; can be computed from the proximity graph of
D(X) and the points in D(X’) through which the strict
transform of the infinity line passes.

@ The proximity graph of D(X) determines a bound for the
degree of the (minimal) WAI polynomial first integral.

A. Ferragut
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Results. Algorithms

The algorithm

@ Compute D(X).

Q Let r be the number of maximal points of D(X). It must
happen #Fr(D(X)) = r.

© Compute f; = 0 for the unique curve C; defined by the
Theorem.

©Q Compute n.

@ Check whether [];_, f™ is a first integral of X.

A. Ferragut
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An example

(10x” — 9x8 + 6x%y + 9x*y — 6x3y + 6x2y2 + 2xy?)dx
+(2x8 — x* +-6x3y — X2y + 4y?)dy.

We have
o D(X) = {P}2,.
@ r=3,
Ry = My = Px3,
Ro = Mp = Pog,
R3 = M3 = Pgg.

A. Ferragut
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10000000014000000000000000000
10000000140000000000000000000
10000001400000000000000000000
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11000140000000000000000000000
11011400000000000000000000000
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Results. Algorithms

An example

After some technical stuff we compute

R=(10;6,4,2,2,1,...,1,2,2,2,2,2).

After this we know that n = 10.

From the three first rows we can compute the three curves
X3 —X?Z+YZ?°=0,X3+YZ?2=0,X?+YZ=0.

Moreover,
R:C1 +Cg+203,

where ¢; is the i-th row of the matrix.

H=(y —x2+ x3)(y + x3)(x2 + y)? is a first integral of X.

A. Ferragut



Results. Algorithms

An alternative step 4

Compute k; the cofactor of f; = 0 and solve Zf:1 niki(x,y) = 0. J

Let
fi=y—x2+x3 ky=2x(—x?—4x3+43x* — 5y + 3xy);
bh=y+ x5, ko = 2x(3x% — 5x3 4+ 3x* — y + 3xy);
fz=x2+y, ks = x(—2x2 +9x® — 6x* 4+ 6y — 6xy).

Solving the linear system 2?21 niki(x,y) = 0 we get
n=n,=1and n3 = 2.

A. Ferragut
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A further challenge

WAI Positive Darboux first integrals

@ Consider X having H = []/_; £, aj € RT.

° {1’5 = % € Q*}j>o, tﬁ — aj.
O My 7 = T 4.

o [T\_, " determines X/ with a WAI PFI.
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A further challenge

WAI Positive Darboux first integrals

@ Consider X having H = []/_; £, aj € RT.

(*] {ti = % S QJF}/'Z(), ti — Q4.

rooPi/a r Pl
O [[i "™ =TIzt f; :

]

o [T\_, " determines X/ with a WAI PFI.
@ Set X (resp. X”) the projectivization of X (resp. X/).
@ We want to use our knowledge on A” to decide whether X

has a Darboux positive WAL first integral (and compute it in
the affirmative case).

A. Ferragut
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WAI DFI

A further challenge

@ The main goal is to compute the invariant curves f;.
@ The exponents «; can be computed through the cofactors.
@ We are mainly interested in the approximation of X by X.

A. Ferragut
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