Well-behaved At Infinity First Integrals of Polynomial Vector Fields

Antoni Ferragut Universitat Jaume I Institut de Matemàtica i Aplicacions de Castelló

Joint work with C. Galindo (UJI) and F. Monserrat (UPV) To appear in the J. of Math. Anal. and Appl.

AQTDE2015

Contents

- 2 Polynomial vector fields in \mathbb{CP}^2
- 3 Reduction of singularities
- 4 Linear systems. Clusters
- 5 Results and algorithms
- 6 WAI Positive Darboux first integrals

The context

Basic tools

A planar polynomial differential system X of degree d in \mathbb{C}^2 :

$$\dot{x} = p(x, y), \quad \dot{y} = q(x, y).$$
 (1)

A first integral is H such that

$$XH = p \frac{\partial H}{\partial x} + q \frac{\partial H}{\partial y} = 0.$$

An invariant algebraic curve if f = 0 such that

$$Xf = p \frac{\partial f}{\partial x} + q \frac{\partial f}{\partial y} = kf.$$

k is the cofactor of f = 0.

Definitions

- Let $L : \{Z = 0\}$ be the infinity line.
- Let C: {F(X, Y, Z) = 0}. C has only one place at infinity if C ∩ L = {P} and C is reduced and unibranch at P.
- $H = \prod_{i=1}^{r} f_i^{n_i}$ is a well-behaved at infinity (WAI) function if $F_i = Z^{d_i} f_i(X/Z, Y/Z)$ has only one place at infinity.

We define

$$\bar{H}(X,Y,Z)=\frac{\prod_{i=1}^{r}F_{i}^{r_{i}}}{Z^{n}},$$

Definitions

- Let $L : \{Z = 0\}$ be the infinity line.
- Let $C : \{F(X, Y, Z) = 0\}$. *C* has only one place at infinity if $C \cap L = \{P\}$ and *C* is reduced and unibranch at *P*.
- $H = \prod_{i=1}^{r} f_{i}^{n_{i}}$ is a well-behaved at infinity (WAI) function if $F_{i} = Z^{d_{i}} f_{i}(X/Z, Y/Z)$ has only one place at infinity.

We define

$$\bar{H}(X,Y,Z)=\frac{\prod_{i=1}^{r}F_{i}^{n_{i}}}{Z^{n}},$$

Definitions

- Let $L : \{Z = 0\}$ be the infinity line.
- Let $C : \{F(X, Y, Z) = 0\}$. C has only one place at infinity if $C \cap L = \{P\}$ and C is reduced and unibranch at P.
- $H = \prod_{i=1}^{r} f_i^{n_i}$ is a well-behaved at infinity (WAI) function if $F_i = Z^{d_i} f_i(X/Z, Y/Z)$ has only one place at infinity.

We define

$$\bar{H}(X,Y,Z)=\frac{\prod_{i=1}^{r}F_{i}^{n_{i}}}{Z^{n}},$$

Definitions

- Let $L : \{Z = 0\}$ be the infinity line.
- Let $C : \{F(X, Y, Z) = 0\}$. C has only one place at infinity if $C \cap L = \{P\}$ and C is reduced and unibranch at P.
- $H = \prod_{i=1}^{r} f_i^{n_i}$ is a well-behaved at infinity (WAI) function if $F_i = Z^{d_i} f_i(X/Z, Y/Z)$ has only one place at infinity.

We define

$$\bar{H}(X,Y,Z)=\frac{\prod_{i=1}^r F_i^{n_i}}{Z^n},$$

Definitions

- Let $L : \{Z = 0\}$ be the infinity line.
- Let $C : \{F(X, Y, Z) = 0\}$. C has only one place at infinity if $C \cap L = \{P\}$ and C is reduced and unibranch at P.
- $H = \prod_{i=1}^{r} f_i^{n_i}$ is a well-behaved at infinity (WAI) function if $F_i = Z^{d_i} f_i(X/Z, Y/Z)$ has only one place at infinity.

We define

$$\bar{H}(X, Y, Z) = \frac{\prod_{i=1}^r F_i^{n_i}}{Z^n},$$

The Catalan way of asking about things

- Does X has a WAI polynomial first integral? (Y/N)
- In the affirmative case, can we compute a minimal WAI polynomial first integral? (Y/N)

The Catalan way of asking about things

Does X has a WAI polynomial first integral? (Y/N)

In the affirmative case, can we compute a minimal WAI polynomial first integral? (Y/N)

The Catalan way of asking about things

- Does X has a WAI polynomial first integral? (Y/N)
- In the affirmative case, can we compute a minimal WAI polynomial first integral? (Y/N)

The Catalan way of asking about things

- Does X has a WAI polynomial first integral? (Y/N)
- In the affirmative case, can we compute a minimal WAI polynomial first integral? (Y/N)

NOTE: Even if we answer YES to both questions, nothing seems to happen.

Contents

- Introduction and objectives
- 2 Polynomial vector fields in \mathbb{CP}^2
- 3 Reduction of singularities
- 4 Linear systems. Clusters
- 5 Results and algorithms
- 6 WAI Positive Darboux first integrals

The 1-form
$$\Omega = AdX + BdY + CdZ$$
 of degree $d + 1$ is projective if $XA + YB + ZC = 0$.

Let P, Q, and R of degree d such that

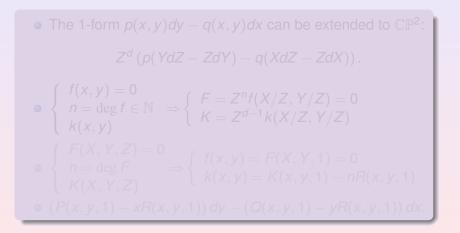
$$A = ZQ - YR$$
, $B = XR - ZP$, $C = YP - XQ$.

(P, Q, R) can be thought of as a homogeneous polynomial vector field in \mathbb{CP}^2 of degree *d*:

$$\mathcal{X} = \mathcal{P} \frac{\partial}{\partial X} + \mathcal{Q} \frac{\partial}{\partial Y} + \mathcal{R} \frac{\partial}{\partial Z},$$

F(X, Y, Z) = 0 is invariant for \mathcal{X} if

$$\mathcal{X}F = P\frac{\partial F}{\partial X} + Q\frac{\partial F}{\partial Y} + R\frac{\partial F}{\partial Z} = KF.$$



• The 1-form p(x, y)dy - q(x, y)dx can be extended to \mathbb{CP}^2 : $Z^{d}(p(YdZ - ZdY) - q(XdZ - ZdX)).$

• The 1-form p(x, y)dy - q(x, y)dx can be extended to \mathbb{CP}^2 : Z^{d} (p(YdZ - ZdY) - q(XdZ - ZdX)). • $\begin{cases} f(X,Y) = 0\\ n = \deg f \in \mathbb{N} \\ k(X,Y) \end{cases} \Rightarrow \begin{cases} F = Z^n f(X/Z,Y/Z) = 0\\ K = Z^{d-1} k(X/Z,Y/Z) \end{cases}$

• The 1-form p(x, y)dy - q(x, y)dx can be extended to \mathbb{CP}^2 : $Z^{d}(p(YdZ - ZdY) - q(XdZ - ZdX)).$ • $\begin{cases} f(x,y) = 0\\ n = \deg f \in \mathbb{N} \\ k(x,y) \end{cases} \Rightarrow \begin{cases} F = Z^n f(X/Z, Y/Z) = 0\\ K = Z^{d-1} k(X/Z, Y/Z) \end{cases}$ • $\begin{cases} F(X, Y, Z) = 0\\ n = \deg F\\ K(X, Y, Z) \end{cases} \Rightarrow \begin{cases} f(x, y) = F(X, Y, 1) = 0\\ k(x, y) = K(x, y, 1) - nR(x, y, 1) \end{cases}$

• The 1-form p(x, y)dy - q(x, y)dx can be extended to \mathbb{CP}^2 : $Z^{d}(p(YdZ - ZdY) - q(XdZ - ZdX))$. • $\begin{cases} f(x,y) = 0 \\ n = \deg f \in \mathbb{N} \\ k(x,y) \end{cases} \Rightarrow \begin{cases} F = Z^n f(X/Z, Y/Z) = 0 \\ K = Z^{d-1} k(X/Z, Y/Z) \end{cases}$ • $\begin{cases} F(X, Y, Z) = 0\\ n = \deg F\\ K(X, Y, Z) \end{cases} \Rightarrow \begin{cases} f(x, y) = F(X, Y, 1) = 0\\ k(x, y) = K(x, y, 1) - nR(x, y, 1) \end{cases}$ • (P(x, y, 1) - xR(x, y, 1)) dy - (Q(x, y, 1) - yR(x, y, 1)) dx.

Contents

- Introduction and objectives
 - 2 Polynomial vector fields in \mathbb{CP}^2
- 3 Reduction of singularities
- 4 Linear systems. Clusters
- 5 Results and algorithms
- 6 WAI Positive Darboux first integrals

The blow-up technique

Blowing-up a singular point P

$$V_1^P: \dot{x} = p(x, xz), \quad \dot{z} = \frac{q(x, xz) - zp(x, xz)}{x};$$
$$V_2^P: \dot{z} = \frac{p(yz, y) - zq(yz, y)}{y}, \quad \dot{y} = q(yz, y);$$

The exceptional divisor E_P : {x = 0} (resp. {y = 0}). The projection map

$$\Pi_P: BL_P(M) o M$$

 $(x, z) \mapsto (x, xz)$

from which $E_P = \prod_P^{-1}(P)$.

From ω = p dy - q dx we have ω_m = p_m dy - q_m dx.
Let Π_O : Bl_O(C²) → C² and charts (V_i^O, φ_i).

• The total transform by Π_O of w in V_1^O is

 $\omega^*|_{V_1^o} := x^m [(\alpha(1,z) + x\beta(x,z))dx + x(p_m(1,z) + x\gamma(x,z))dz]$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

• The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \neq 0$).

• From $\tilde{\omega}|_{V^{\mathcal{O}}}$ we construct a 1-form $\tilde{\omega}$ on $Bl_{\mathcal{O}}(\mathbb{C}^2)$.

• From $\omega = p \, dy - q \, dx$ we have $\omega_m = p_m \, dy - q_m \, dx$.

- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m \lfloor (\alpha(1, z) + x\beta(x, z)) dx + x(p_m(1, z) + x\gamma(x, z)) dz \rfloor$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

• The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \neq 0$).

• From $\tilde{\omega}|_{V,\mathcal{O}}$ we construct a 1-form $\tilde{\omega}$ on $Bl_{\mathcal{O}}(\mathbb{C}^2)$.

- From $\omega = p \, dy q \, dx$ we have $\omega_m = p_m \, dy q_m \, dx$.
- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m \lfloor (\alpha(1, z) + x\beta(x, z)) dx + x(p_m(1, z) + x\gamma(x, z)) dz \rfloor$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

• The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \not\equiv 0$).

• From $\tilde{\omega}|_{V^{\mathcal{O}}}$ we construct a 1-form $\tilde{\omega}$ on $Bl_{\mathcal{O}}(\mathbb{C}^2)$.

- From $\omega = p \, dy q \, dx$ we have $\omega_m = p_m \, dy q_m \, dx$.
- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m [(\alpha(1,z) + x\beta(x,z))dx + x(p_m(1,z) + x\gamma(x,z))dz]$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

The strict transform by Π_O of *w* in V₁^O is ω̃|_{V₁^O} := ω^{*}|_{V₁^O}/x^{m+1} if α ≡ 0 (resp. = ω^{*}|_{V₁^O}/x^m if α ≠ 0).
From ω̃|_{V₁^O} we construct a 1-form ω̃ on Bl_O(C²).
From X. M. P we can obtain X̃ in Bl_P(M).

- From $\omega = p \, dy q \, dx$ we have $\omega_m = p_m \, dy q_m \, dx$.
- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m [(\alpha(1,z) + x\beta(x,z))dx + x(p_m(1,z) + x\gamma(x,z))dz]$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

• The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \neq 0$).

• From $\tilde{\omega}|_{V_i^O}$ we construct a 1-form $\tilde{\omega}$ on $Bl_O(\mathbb{C}^2)$.

- From $\omega = p \, dy q \, dx$ we have $\omega_m = p_m \, dy q_m \, dx$.
- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m [(\alpha(1,z) + x\beta(x,z))dx + x(p_m(1,z) + x\gamma(x,z))dz]$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

- The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \neq 0$).
- From $\tilde{\omega}|_{V^{O}}$ we construct a 1-form $\tilde{\omega}$ on $Bl_{O}(\mathbb{C}^{2})$.
- From \mathcal{X}, M, P we can obtain $\hat{\mathcal{X}}$ in $Bl_P(M)$

- From $\omega = p \, dy q \, dx$ we have $\omega_m = p_m \, dy q_m \, dx$.
- Let $\Pi_O : Bl_O(\mathbb{C}^2) \to \mathbb{C}^2$ and charts (V_i^O, ϕ_i) .
- The total transform by Π_O of w in V_1^O is

$$\omega^*|_{V_1^{\mathcal{O}}} := x^m [(\alpha(1,z) + x\beta(x,z))dx + x(p_m(1,z) + x\gamma(x,z))dz]$$

where $\alpha(x, y) = yp_m(x, y) - xq_m(x, y)$.

- The strict transform by Π_O of w in V_1^O is $\tilde{\omega}|_{V_1^O} := \omega^*|_{V_1^O}/x^{m+1}$ if $\alpha \equiv 0$ (resp. $= \omega^*|_{V_1^O}/x^m$ if $\alpha \not\equiv 0$).
- From $\tilde{\omega}|_{V^O}$ we construct a 1-form $\tilde{\omega}$ on $Bl_O(\mathbb{C}^2)$.
- From \mathcal{X}, M, P we can obtain $\tilde{\mathcal{X}}$ in $Bl_P(M)$.

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ a_{1y} & a_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.

$$\lambda_1=\mathsf{0}
eq\lambda_2$$
 or $rac{\lambda_1}{\lambda_2}
ot\in\mathbb{Q}^+.$

• O is ordinary if it is not simple (includes dicritical).

Some observations

Ordinary singular points can be reduced (by a finite

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- O is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.

$$\lambda_1 = \mathbf{0} \neq \lambda_2 \text{ or } \frac{\lambda_1}{\lambda_2} \notin \mathbb{Q}^+.$$

O is ordinary if it is not simple (includes dicritical).

Some observations

Ordinary singular points can be reduced (by a finite

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} \rho_{1x} & \rho_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t
 - $\lambda_1 = \mathbf{0} \neq \lambda_2 \text{ or } \frac{\lambda_1}{\lambda_2} \notin \mathbb{Q}^+$

• O is ordinary if it is not simple (includes dicritical).

Some observations

Ordinary singular points can be reduced (by a finites)

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t.

$$\lambda_1 = \mathbf{0} \neq \lambda_2 \text{ or } \frac{\lambda_1}{\lambda_2} \notin \mathbb{Q}^+.$$

O is ordinary if it is not simple (includes dicritical).

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t.

$$\lambda_1=\mathsf{0}
eq\lambda_2$$
 or $rac{\lambda_1}{\lambda_2}
ot\in\mathbb{Q}^+.$

• O is ordinary if it is not simple (includes dicritical).

Some observations

Simple singular points cannot be reduced.

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t.

$$\lambda_{1}=\mathsf{0}
eq\lambda_{2}$$
 or $rac{\lambda_{1}}{\lambda_{2}}
ot\in\mathbb{Q}^{+}$.

• O is ordinary if it is not simple (includes dicritical).

- Simple singular points cannot be reduced.
- Ordinary singular points can be reduced (by a finite sequence of BU) s.t. the strict transform X in the last obtained complex manifold has no ordinary singularities.

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t.

$$\lambda_{1}=\mathsf{0}
eq\lambda_{2}$$
 or $rac{\lambda_{1}}{\lambda_{2}}
ot\in\mathbb{Q}^{+}$.

• O is ordinary if it is not simple (includes dicritical).

- Simple singular points cannot be reduced.
- Ordinary singular points can be reduced (by a finite sequence of BU) s.t. the strict transform X in the last obtained complex manifold has no ordinary singularities.

Types of singular points

- *O* is a dicritical singular point if $\alpha \equiv 0$.
- O is non-dicritical if and only if E_O is invariant.
- *O* is simple if m = 1 and $\begin{pmatrix} p_{1x} & p_{1y} \\ q_{1x} & q_{1y} \end{pmatrix}$ has EV λ_1, λ_2 s.t.

$$\lambda_1=\mathsf{0}
eq\lambda_2$$
 or $rac{\lambda_1}{\lambda_2}
ot\in\mathbb{Q}^+.$

• O is ordinary if it is not simple (includes dicritical).

- Simple singular points cannot be reduced.
- Ordinary singular points can be reduced (by a finite sequence of BU) s.t. the strict transform X in the last obtained complex manifold has no ordinary singularities.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- Q is proximate to P if it belongs to the strict transform of E_P.
- Q is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- *Q* is proximate to *P* if it belongs to the strict transform of *E*_{*P*}.
- Q is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- *Q* is proximate to *P* if it belongs to the strict transform of *E_P*.
- Q is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- *Q* is proximate to *P* if it belongs to the strict transform of *E*_{*P*}.
- Q is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- *Q* is proximate to *P* if it belongs to the strict transform of *E*_{*P*}.
- *Q* is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- *E_P* is the first infinitesimal neighborhood of *P*.
- The *i*-th infinitesimal neighborhood of *P* is formed by the points on the first infinitesimal neighborhood of some point in the (*i* 1)-th infinitesimal neighborhood of *P*. They are infinitely near to *P*.
- *Q* is proximate to *P* if it belongs to the strict transform of *E*_{*P*}.
- *Q* is a satellite if it is proximate to two points. Otherwise it is free.
- R precedes Q if Q is infinitely near to R.

- A configuration is $C = \{Q_0, \ldots, Q_n\}$ such that $Q_0 \in X_0 = M, Q_i \in Bl_{Q_{i-1}}(X_{i-1}) =: X_i \to X_{i-1}.$
- We can construct the proximity graph Γ_C .
- The singular configuration $S(\mathcal{X}) = \bigcup_P S_P(\mathcal{X})$, *P* ordinary.
- The dicritical configuration
 D(X) = {P ∈ S(X) : ∃Q ∈ S(X) infinitely near dicritical singularity}.

- A configuration is $C = \{Q_0, \ldots, Q_n\}$ such that $Q_0 \in X_0 = M, Q_i \in Bl_{Q_{i-1}}(X_{i-1}) =: X_i \to X_{i-1}.$
- We can construct the proximity graph Γ_C .
- The singular configuration $S(\mathcal{X}) = \bigcup_P S_P(\mathcal{X})$, *P* ordinary.
- The dicritical configuration
 D(X) = {P ∈ S(X) : ∃Q ∈ S(X) infinitely near dicritical singularity}.

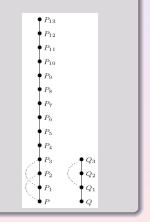
- A configuration is $C = \{Q_0, \ldots, Q_n\}$ such that $Q_0 \in X_0 = M, Q_i \in Bl_{Q_{i-1}}(X_{i-1}) =: X_i \to X_{i-1}.$
- We can construct the proximity graph Γ_C .
- The singular configuration $S(\mathcal{X}) = \bigcup_P S_P(\mathcal{X})$, *P* ordinary.
- The dicritical configuration
 D(X) = {P ∈ S(X) : ∃Q ∈ S(X) infinitely near dicritical singularity}.

- A configuration is $C = \{Q_0, \ldots, Q_n\}$ such that $Q_0 \in X_0 = M, Q_i \in Bl_{Q_{i-1}}(X_{i-1}) =: X_i \to X_{i-1}.$
- We can construct the proximity graph Γ_C .
- The singular configuration $S(\mathcal{X}) = \bigcup_P S_P(\mathcal{X}), P$ ordinary.
- The dicritical configuration
 D(X) = {P ∈ S(X) : ∃Q ∈ S(X) infinitely near dicritical singularity}.

- A configuration is $C = \{Q_0, \ldots, Q_n\}$ such that $Q_0 \in X_0 = M, Q_i \in Bl_{Q_{i-1}}(X_{i-1}) =: X_i \to X_{i-1}.$
- We can construct the proximity graph Γ_C .
- The singular configuration $S(\mathcal{X}) = \bigcup_P S_P(\mathcal{X}), P$ ordinary.
- The dicritical configuration
 D(X) = {P ∈ S(X) : ∃Q ∈ S(X) infinitely near dicritical singularity}.

Example

Let \mathcal{X} be the vector field $2XZ^4 dX + 5Y^4Z dY$ $-(5Y^5+2X^2Z^3)dZ$ with singularities $\begin{cases} P = (1 : 0 : 0), \\ Q = (0 : 0 : 1). \end{cases}$ We have $\begin{aligned} \mathcal{S}(\mathcal{X}) &= \{ P, Q \} \cup \{ P_i \}_{i=1}^{13} \cup \{ Q_i \}_{i=1}^{3}, \\ \mathcal{D}(\mathcal{X}) &= \{ P \} \cup \{ P_i \}_{i=1}^{13}. \end{aligned}$



Contents

- Introduction and objectives
- 2 Polynomial vector fields in \mathbb{CP}^2
- 3 Reduction of singularities
- 4 Linear systems. Clusters
 - 5 Results and algorithms
- 6 WAI Positive Darboux first integrals

Linear systems

A linear system on CP² is the set of algebraic curves given by a linear subspace of C_m[X, Y, Z] ∪ {0}.
If it has dimension 1, then it is a pencil.
A cluster of CP² is (C, m) where C = (Q₀,..., Q_n) is a configuration and m = (m₀,..., m_n), m_i ∈ N.

Linear systems

 A linear system on CP² is the set of algebraic curves given by a linear subspace of C_m[X, Y, Z] ∪ {0}.

If it has dimension 1, then it is a pencil.

• A cluster of \mathbb{CP}^2 is $(\mathcal{C}, \mathbf{m})$ where $\mathcal{C} = (Q_0, \dots, Q_n)$ is a configuration and $\mathbf{m} = (m_0, \dots, m_n), m_i \in \mathbb{N}$.

Linear systems

 A linear system on CP² is the set of algebraic curves given by a linear subspace of C_m[X, Y, Z] ∪ {0}.

If it has dimension 1, then it is a pencil.

• A cluster of \mathbb{CP}^2 is $(\mathcal{C}, \mathbf{m})$ where $\mathcal{C} = (Q_0, \dots, Q_n)$ is a configuration and $\mathbf{m} = (m_0, \dots, m_n), m_i \in \mathbb{N}$.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $\mathcal{C} : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_j}$.
- The virtual transform $C_{O_{k}}^{\mathcal{K}}$ at Q_{k} : $x^{-m_{j}}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- *C* passes virtually through \mathcal{K} if it passes virtually through all $Q_i \in \mathcal{K}$.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{O_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_j}$.
- The virtual transform $C_{Q_{k}}^{\mathcal{K}}$ at Q_{k} : $x^{-m_{j}}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \geq m_k$
- *C* passes virtually through \mathcal{K} if it passes virtually through all $Q_i \in \mathcal{K}$.

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_j}$.
- The virtual transform $C_{Q_{k}}^{\mathcal{K}}$ at Q_{k} : $x^{-m_{j}}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$
- *C* passes virtually through \mathcal{K} if it passes virtually through all $Q_i \in \mathcal{K}$.

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_j}$.
- The virtual transform $C_{Q_{k}}^{\mathcal{K}}$ at Q_{k} : $x^{-m_{j}}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \geq m_k$
- *C* passes virtually through *K* if it passes virtually through all *Q_i* ∈ *K*.

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_j}$.
- The virtual transform $C_{Q_k}^{\mathcal{K}}$ at Q_k : $x^{-m_j}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$
- *C* passes virtually through *K* if it passes virtually through all *Q_i* ∈ *K*.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_i}$.
- The virtual transform $C_{Q_{k}}^{\mathcal{K}}$ at Q_{k} : $x^{-m_{j}}f(x, x(t+\lambda)) = 0$.
- C passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \geq m_k$
- *C* passes virtually through *K* if it passes virtually through all *Q_i* ∈ *K*.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $\mathcal{C} : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_i}$.
- The virtual transform $C_{Q_k}^{\mathcal{K}}$ at Q_k : $x^{-m_j}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{O_k}^{\mathcal{K}}) \geq m_k$.
- *C* passes virtually through *K* if it passes virtually through all *Q_i* ∈ *K*.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $\mathcal{C} : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_i}$.
- The virtual transform $C_{Q_k}^{\mathcal{K}}$ at Q_k : $x^{-m_j}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- *C* passes virtually through *K* if it passes virtually through all *Q_i* ∈ *K*.

Linear systems constructed from clusters

Virtual transform

Set $\mathcal{K} = (\mathcal{C}, \mathbf{m})$ a cluster and $C : \{f = 0\}$ an algebraic curve.

- If $Q_k \in C$, let $\ell(Q_k) = \#\{Q_j \in C | Q_k \text{ is infinitely near to } Q_j\}$.
- Case $\ell(Q_k) = 1$: the virtual transform $C_{Q_k}^{\mathcal{K}}$ is f(x, y) = 0.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- Case ℓ(Q_k) > 1: Q_k in the 1IN of Q_j ∈ C and C passes virtually through Q_j.
- f(x, y) = 0 a local equation of $C_{Q_i}^{\mathcal{K}}$; $Q_k = (0, \lambda) \in V_1^{Q_i}$.
- The virtual transform $C_{Q_k}^{\mathcal{K}}$ at Q_k : $x^{-m_j}f(x, x(t+\lambda)) = 0$.
- *C* passes virtually through Q_k if $m_{Q_k}(C_{Q_k}^{\mathcal{K}}) \ge m_k$.
- C passes virtually through *K* if it passes virtually through all Q_i ∈ *K*.

The strict transform \tilde{C} of *C* is the global curve given by the virtual transform through the cluster of points and multiplicities defined by the curve.

The linear system $\mathcal{L}_m(\mathcal{K})$ determined by $m \in \mathbb{N}$ and \mathcal{K} is the linear system on \mathbb{CP}^2 given by those curves defined by polynomials in $\mathbb{C}_m[X, Y, Z] \cup \{0\}$ that pass virtually through \mathcal{K} .

Example

Consider the cluster $\mathcal{K} = (\mathcal{C}, \mathbf{m})$, where

•
$$C = \{Q, P, P_1, P_2\}, \mathbf{m} = (2, 2, 1, 1);$$

•
$$P = (0:0:1), Q = (1:0:1); \text{ or } (0,0), (1,0) \text{ in } Z \neq 0.$$

•
$$P_1 = (0,3) \in V_1^P$$
, $P_2 = (1,0) \in V_2^{P_1}$ infinitely near to P .

Let us compute $\mathcal{L}_3(\mathcal{K})$.

Example

Let $\mathcal{C} \in \mathcal{L}_3(\mathcal{K})$ be

$$aX^3 + bX^2Y + cX^2Z + dXY^2 + eXYZ$$

+ $fXZ^2 + gY^3 + hY^2Z + iYZ^2 + kZ^3$,

Consider it in the local chart $Z \neq 0$.

- The multiplicity of *C* at *P* must be at least 2, then f = i = k = 0.
- The multiplicity of C at Q must be at least 2, so a = c = 0 and b = -e.

Example

The local equation defining the virtual transform of *C* at P_1 , $C_{P_1}^{\mathcal{K}}$, is

$$3(e+3h) + (9d - 3e + 27g)x_1 + (e+6h)y_1 + (6d - e + 27g)x_1y_1 + hy_1^2 + (d+9g)x_1y_1^2 + gx_1y_1^3 = 0$$

in coordinates $(x_1 = x, y_1 = y/x)$.

• The multiplicity of $C_{P_1}^{\mathcal{K}}$ at P_1 must be at least 1, then e = -3h.

Example

The local equation of the virtual transform of C at P_2 is

$$3h + (9d + 27g + 9h)x_2 + hy_2 + (6d + 27g + 3h)x_2y_2 + (d + 9g)x_2y_2^2 + gx_2y_2^3 = 0,$$

where $x_2 = x_1/y_1$ and $y_2 = y_1$.

• $C_{P_2}^{\mathcal{K}}$ passes virtually through P_2 if and only if h = 0.

Hence the curves in $\mathcal{L}_3(\mathcal{K})$ are defined by $Y^2(\alpha X + \beta Y) = 0$, for $(\alpha, \beta) \in \mathbb{C}^2 \setminus \{(0, 0)\}$.

Let $\mathcal{BP}(\mathcal{L})$ be the configuration of points such that all the generic curves of \mathcal{L} have the same multiplicities $\operatorname{mult}_Q(\mathcal{L})$ at every point $Q \in \mathcal{BP}(\mathcal{L})$ and empty intersection at the manifold obtained by blowing-up these points.

Let $\mathbf{m} = (\operatorname{mult}_Q(\mathcal{L}))_{Q \in \mathcal{BP}(\mathcal{L})}.$

We have the cluster of base points $(\mathcal{BP}(\mathcal{L}), \mathbf{m})$.

Example

Back to

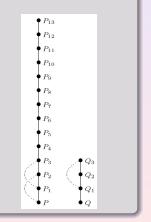
 $\begin{array}{l} 2XZ^{4} \ dX + 5Y^{4}Z \ dY \\ - (5Y^{5} + 2X^{2}Z^{3})dZ, \end{array}$

consider ${\mathcal L}$ defined by

$$\alpha(X^2Z^3+Y^5)+\beta Z^5=0.$$

The cluster of base points of $\ensuremath{\mathcal{L}}$ is

$$(\mathcal{D}(\mathcal{X}), (\mathbf{3}, \mathbf{2}, \mathbf{1}, \dots, \mathbf{1})).$$



Proposition

If \mathcal{L} is a pencil, then

$$\mathcal{BP}(\mathcal{L}) = \mathcal{D}(\mathcal{X}_{\mathcal{L}}),$$

where $\mathcal{X}_{\mathcal{L}}$ is the vector field with invariant curves given by $\mathcal{L}.$

Proposition

If \mathcal{L} is a pencil, then

$$\mathcal{BP}(\mathcal{L}) = \mathcal{D}(\mathcal{X}_{\mathcal{L}}),$$

where $\mathcal{X}_{\mathcal{L}}$ is the vector field with invariant curves given by $\mathcal{L}.$

• Let
$$\mathcal{P}_{\mathcal{X}} = \mathbb{P}\langle F_1^{n_1} \cdots F_r^{n_r}, Z^n \rangle \iff \overline{H}$$
.

- We have $\mathcal{P}_{\mathcal{X}} = \mathcal{L}_n(\mathcal{BP}_{\mathcal{X}}).$
- We can compute *H* from $\mathcal{BP}_{\mathcal{X}}$ and *n*.

Proposition

If \mathcal{L} is a pencil, then

$$\mathcal{BP}(\mathcal{L}) = \mathcal{D}(\mathcal{X}_{\mathcal{L}}),$$

where $\mathcal{X}_{\mathcal{L}}$ is the vector field with invariant curves given by \mathcal{L} .

- Let $\mathcal{P}_{\mathcal{X}} = \mathbb{P}\langle F_1^{n_1} \cdots F_r^{n_r}, Z^n \rangle \iff \overline{H}$.
- We have $\mathcal{P}_{\mathcal{X}} = \mathcal{L}_n(\mathcal{BP}_{\mathcal{X}})$.
- We can compute *H* from $\mathcal{BP}_{\mathcal{X}}$ and *n*.

Proposition

If \mathcal{L} is a pencil, then

$$\mathcal{BP}(\mathcal{L}) = \mathcal{D}(\mathcal{X}_{\mathcal{L}}),$$

where $\mathcal{X}_{\mathcal{L}}$ is the vector field with invariant curves given by \mathcal{L} .

- Let $\mathcal{P}_{\mathcal{X}} = \mathbb{P}\langle F_1^{n_1} \cdots F_r^{n_r}, Z^n \rangle \iff \overline{H}$.
- We have $\mathcal{P}_{\mathcal{X}} = \mathcal{L}_n(\mathcal{BP}_{\mathcal{X}})$.

• We can compute *H* from $\mathcal{BP}_{\mathcal{X}}$ and *n*.

Cluster of base points

Proposition

If \mathcal{L} is a pencil, then

$$\mathcal{BP}(\mathcal{L}) = \mathcal{D}(\mathcal{X}_{\mathcal{L}}),$$

where $\mathcal{X}_{\mathcal{L}}$ is the vector field with invariant curves given by \mathcal{L} .

- Let $\mathcal{P}_{\mathcal{X}} = \mathbb{P}\langle F_1^{n_1} \cdots F_r^{n_r}, Z^n \rangle \iff \overline{H}$.
- We have $\mathcal{P}_{\mathcal{X}} = \mathcal{L}_n(\mathcal{BP}_{\mathcal{X}})$.
- We can compute *H* from $\mathcal{BP}_{\mathcal{X}}$ and *n*.

Contents

- Introduction and objectives
- Polynomial vector fields in CP²
- 3 Reduction of singularities
- 4 Linear systems. Clusters
- 6 Results and algorithms
- 6 WAI Positive Darboux first integrals

Theorem

Theorem

Consider \mathcal{X} having a WAI PFI $H = \prod_{i=1}^{r} f_i^{n_i}$.

• $\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$

- $\mathcal{D}(\mathcal{X})$ has exactly *r* maximal points R_i . They are the unique dicritical singularities of \mathcal{X} .
- The set Fr(D(X)) of free points of D(X) has exactly r maximal elements M_i. Moreover, R_i is infinitely near to M_i.
 The degree of F_i can be obtained from:

Theorem

- $\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$
- D(X) has exactly r maximal points R_i. They are the unique dicritical singularities of X.
- The set Fr(D(X)) of free points of D(X) has exactly *r* maximal elements *M_i*. Moreover, *R_i* is infinitely near to *M_i*.
 The degree of *F_i* can be obtained from:

Theorem

- $\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$
- D(X) has exactly r maximal points R_i. They are the unique dicritical singularities of X.
- The set Fr(D(X)) of free points of D(X) has exactly r maximal elements M_i. Moreover, R_i is infinitely near to M_i.
- The degree of F_i can be obtained from:

Theorem

- $\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$
- D(X) has exactly r maximal points R_i. They are the unique dicritical singularities of X.
- The set Fr(D(X)) of free points of D(X) has exactly r maximal elements M_i. Moreover, R_i is infinitely near to M_i.
- The degree of *F_i* can be obtained from:
 - M_i and the points of $\mathcal{D}(\mathcal{X})$ to which M_i is infinitely near.
 - A convenient set of multiplicities.

Theorem

Consider \mathcal{X} having a WAI PFI $H = \prod_{i=1}^{r} f_i^{n_i}$.

•
$$\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$$

- D(X) has exactly r maximal points R_i. They are the unique dicritical singularities of X.
- The set Fr(D(X)) of free points of D(X) has exactly r maximal elements M_i. Moreover, R_i is infinitely near to M_i.
- The degree of *F_i* can be obtained from:
 - M_i and the points of $\mathcal{D}(\mathcal{X})$ to which M_i is infinitely near.

A convenient set of multiplicities.

Theorem

•
$$\mathcal{D}(\mathcal{X}) = \mathcal{BP}(\mathcal{P}_{\mathcal{X}}).$$

- D(X) has exactly r maximal points R_i. They are the unique dicritical singularities of X.
- The set Fr(D(X)) of free points of D(X) has exactly r maximal elements M_i. Moreover, R_i is infinitely near to M_i.
- The degree of *F_i* can be obtained from:
 - M_i and the points of $\mathcal{D}(\mathcal{X})$ to which M_i is infinitely near.
 - A convenient set of multiplicities.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN dicritical singularities of \mathcal{X} .
- MFr $(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$
- For each *i* there exists C_i associated to M_i of degree d_i computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If C_i : { $f_i(x, y) = 0$ } then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- *R_i* are the unique IN dicritical singularities of *X*.
- MFr $(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$
- For each *i* there exists C_i associated to M_i of degree d_i computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If $C_i : \{f_i(x, y) = 0\}$ then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN discritical singularities of \mathcal{X} .
- MFr $(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$
- For each *i* there exists *C_i* associated to *M_i* of degree *d_i* computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If C_i : { $f_i(x, y) = 0$ } then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN dicritical singularities of \mathcal{X} .

• MFr
$$(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$$

- For each *i* there exists C_i associated to M_i of degree d_i computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If $C_i : \{f_i(x, y) = 0\}$ then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

Theorem

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN discritical singularities of \mathcal{X} .

• MFr
$$(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$$

• For each *i* there exists *C_i* associated to *M_i* of degree *d_i* computable.

• After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.

• If $C_i : \{f_i(x, y) = 0\}$ then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN discritical singularities of \mathcal{X} .

• MFr
$$(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$$

- For each *i* there exists *C_i* associated to *M_i* of degree *d_i* computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If $C_i : \{f_i(x, y) = 0\}$ then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

- *L* is invariant and contains $\mathcal{D}(\mathcal{X}) \cap \mathbb{P}^2$.
- R_i are the unique IN discritical singularities of \mathcal{X} .

• MFr
$$(\mathcal{D}(\mathcal{X})) = \{M_1, \ldots, M_r\}.$$

- For each *i* there exists *C_i* associated to *M_i* of degree *d_i* computable.
- After some computations (skipped), $n_i \in \mathbb{N}$ are obtained.
- If $C_i : \{f_i(x, y) = 0\}$ then $\prod_{i=1}^r f_i^{n_i}$ is a WAI PFI.

Corollary

Corollary

n and *n_i* can be computed from the proximity graph of D(X) and the points in D(X) through which the strict transform of the infinity line passes.

 The proximity graph of D(X) determines a bound for the degree of the (minimal) WAI polynomial first integral.

Corollary

- n and n_i can be computed from the proximity graph of D(X) and the points in D(X) through which the strict transform of the infinity line passes.
- The proximity graph of D(X) determines a bound for the degree of the (minimal) WAI polynomial first integral.

D Compute $\mathcal{D}(\mathcal{X})$.

- 2 Let r be the number of maximal points of D(X). It must happen #Fr(D(X)) = r.
- Compute f_i = 0 for the unique curve C_i defined by the Theorem.

Compute n_i.

• Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

• Compute $\mathcal{D}(\mathcal{X})$.

- Let r be the number of maximal points of D(X). It must happen #Fr(D(X)) = r.
- Compute f_i = 0 for the unique curve C_i defined by the Theorem.

Compute n_i.

• Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

• Compute $\mathcal{D}(\mathcal{X})$.

- 2 Let *r* be the number of maximal points of $\mathcal{D}(\mathcal{X})$. It must happen $\#Fr(\mathcal{D}(\mathcal{X})) = r$.
- Compute f_i = 0 for the unique curve C_i defined by the Theorem.

Compute n_i.

• Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

• Compute $\mathcal{D}(\mathcal{X})$.

- 2 Let *r* be the number of maximal points of $\mathcal{D}(\mathcal{X})$. It must happen $\#Fr(\mathcal{D}(\mathcal{X})) = r$.
- Sompute $f_i = 0$ for the unique curve C_i defined by the Theorem.

Compute n_i.

3 Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

- Compute $\mathcal{D}(\mathcal{X})$.
- 2 Let *r* be the number of maximal points of $\mathcal{D}(\mathcal{X})$. It must happen $\#Fr(\mathcal{D}(\mathcal{X})) = r$.
- Sompute $f_i = 0$ for the unique curve C_i defined by the Theorem.

Compute n_i.

3 Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

- Compute $\mathcal{D}(\mathcal{X})$.
- 2 Let *r* be the number of maximal points of $\mathcal{D}(\mathcal{X})$. It must happen $\#Fr(\mathcal{D}(\mathcal{X})) = r$.
- 3 Compute $f_i = 0$ for the unique curve C_i defined by the Theorem.
- Compute n_i.
- So Check whether $\prod_{i=1}^{r} f_i^{n_i}$ is a first integral of **X**.

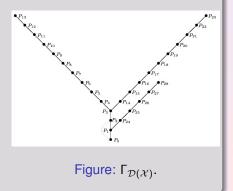
An example

Example

$$\begin{array}{l}(10x^7-9x^6+6x^5y+9x^4y-6x^3y+6x^2y^2+2xy^2)dx\\+(2x^6-x^4+6x^3y-x^2y+4y^2)dy.\end{array}$$

We have

• $\mathcal{D}(\mathcal{X}) = \{P_i\}_{i=0}^{28}$. • r = 3, $R_1 = M_1 = P_{13}$, $R_2 = M_2 = P_{23}$, $R_3 = M_3 = P_{28}$.



WAI DFI

An example

	/3	2	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0、
1	3	2	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0)
	2	1	1	0	0	0	0	Ó	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
1	0	-1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-1	1	0	0	0	Ó	0	0	0	0	Ó	0	0	Ó	Ó	Ó	0	0	0	0	0	0	0	1	Ó	0		0
I	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0
	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{-1}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ł	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0	0		0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0	0		0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1		0	0	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-1	1	0		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1		0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1		0)
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	17

An example

Example

After some technical stuff we compute

$$\mathbf{R} = (10; 6, 4, 2, 2, 1, \dots, 1, 2, 2, 2, 2, 2).$$

After this we know that n = 10.

From the three first rows we can compute the three curves $X^3 - X^2Z + YZ^2 = 0$, $X^3 + YZ^2 = 0$, $X^2 + YZ = 0$.

Moreover,

$$\mathbf{R} = \mathbf{c}_1 + \mathbf{c}_2 + 2\mathbf{c}_3,$$

where \mathbf{c}_i is the *i*-th row of the matrix.

$$H = (y - x^2 + x^3)(y + x^3)(x^2 + y)^2$$
 is a first integral of **X**.

An alternative step 4

Compute k_i the cofactor of $f_i = 0$ and solve $\sum_{i=1}^r n_i k_i(x, y) = 0$.

Example

Let

$$\begin{array}{ll} f_1 = y - x^2 + x^3, & k_1 = 2x(-x^2 - 4x^3 + 3x^4 - 5y + 3xy); \\ f_2 = y + x^3, & k_2 = 2x(3x^2 - 5x^3 + 3x^4 - y + 3xy); \\ f_3 = x^2 + y, & k_3 = x(-2x^2 + 9x^3 - 6x^4 + 6y - 6xy). \end{array}$$

Solving the linear system $\sum_{i=1}^{3} n_i k_i(x, y) = 0$ we get $n_1 = n_2 = 1$ and $n_3 = 2$.

Contents

- Introduction and objectives
- 2 Polynomial vector fields in \mathbb{CP}^2
- 3 Reduction of singularities
- 4 Linear systems. Clusters
- 5 Results and algorithms
- 6 WAI Positive Darboux first integrals

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_{i}^{j}=rac{p_{i}^{\prime}}{q_{i}^{\prime}}\in\mathbb{Q}^{+}\}_{j\geq0},\,\mathfrak{r}_{i}^{j}
ightarrowlpha_{i}.$$

- $\prod_{i=1}^r f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^r f_i^{p_i \prod_{j \neq i} q_j}.$
- $\prod_{i=1}^{r} f_{i}^{t_{i}^{i}}$ determines X^{j} with a WAI PFI.
- Set X (resp. X^j) the projectivization of X (resp. X^j).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

- Consider X having $H = \prod_{i=1}^{r} f_i^{\alpha_i}, \alpha_i \in \mathbb{R}^+$.
- $\{\mathfrak{r}_i^j = \frac{p_i^j}{q_i^j} \in \mathbb{Q}^+\}_{j\geq 0}, \, \mathfrak{r}_i^j \to \alpha_i.$
- $\prod_{i=1}^{r} f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^{r} f_i^{p_i \prod_{j \neq i} q_j}.$
- $\prod_{i=1}^{r} f_{i}^{r_{i}}$ determines X^{j} with a WAI PFI.
- Set X (resp. X^j) the projectivization of X (resp. X^j).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_i^j = \frac{p_i^j}{q_i^j} \in \mathbb{Q}^+\}_{j \ge 0}, \, \mathfrak{r}_i^j \to \alpha_i.$$

- $\prod_{i=1}^r f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^r f_i^{p_i \prod_{j \neq i} q_j}.$
- $\prod_{i=1}^{r} f_{i}^{v_{i}}$ determines X^{j} with a WAI PFI.
- Set X (resp. X^j) the projectivization of X (resp. X^j).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_i^j = \frac{p_i^j}{q_i^j} \in \mathbb{Q}^+\}_{j \ge 0}, \mathfrak{r}_i^j \to \alpha_i.$$

•
$$\prod_{i=1}^{r} f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^{r} f_i^{p_i \prod_{j \neq i} q_j}$$

- $\prod_{i=1}^{r} f_{i}^{\vec{v}_{i}}$ determines X^{j} with a WAI PFI.
- Set \mathcal{X} (resp. \mathcal{X}^{j}) the projectivization of X (resp. X^{j}).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_{i}^{j}=\frac{p_{i}^{j}}{q_{i}^{j}}\in\mathbb{Q}^{+}\}_{j\geq0}, \mathfrak{r}_{i}^{j}\rightarrow\alpha_{i}.$$

•
$$\prod_{i=1}^r f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^r f_i^{p_i \prod_{j \neq i} q_j}$$

- $\prod_{i=1}^{r} f_{i}^{\mathbf{x}_{i}^{i}}$ determines X^{j} with a WAI PFI.
- Set \mathcal{X} (resp. \mathcal{X}^{j}) the projectivization of X (resp. X^{j}).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_{i}^{j}=\frac{p_{i}^{j}}{q_{i}^{j}}\in\mathbb{Q}^{+}\}_{j\geq0},\,\mathfrak{r}_{i}^{j}\rightarrow\alpha_{i}.$$

•
$$\prod_{i=1}^r f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^r f_i^{p_i \prod_{j \neq i} q_j}$$
.

- $\prod_{i=1}^{r} f_{i}^{\mathbf{x}'_{i}}$ determines X^{j} with a WAI PFI.
- Set \mathcal{X} (resp. \mathcal{X}^{j}) the projectivization of X (resp. X^{j}).
- We want to use our knowledge on X^J to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

WAI Positive Darboux first integrals

•
$$\{\mathfrak{r}_{i}^{j}=\frac{p_{i}^{j}}{q_{i}^{j}}\in\mathbb{Q}^{+}\}_{j\geq0},\,\mathfrak{r}_{i}^{j}\rightarrow\alpha_{i}.$$

•
$$\prod_{i=1}^r f_i^{p_i/q_i} \Rightarrow \prod_{i=1}^r f_i^{p_i \prod_{j \neq i} q_j}$$
.

- $\prod_{i=1}^{r} f_{i}^{\mathbf{x}_{i}^{i}}$ determines X^{j} with a WAI PFI.
- Set \mathcal{X} (resp. \mathcal{X}^{j}) the projectivization of X (resp. X^{j}).
- We want to use our knowledge on X^j to decide whether X has a Darboux positive WAI first integral (and compute it in the affirmative case).

The main goal is to compute the invariant curves f_i.
The exponents α_i can be computed through the cofactors
We are mainly interested in the approximation of X by X^j.

• The main goal is to compute the invariant curves f_i .

- The exponents α_i can be computed through the cofactors.
- We are mainly interested in the approximation of X by X^j.

- The main goal is to compute the invariant curves *f_i*.
- The exponents α_i can be computed through the cofactors.
- We are mainly interested in the approximation of X by λ

- The main goal is to compute the invariant curves *f_i*.
- The exponents α_i can be computed through the cofactors.
- We are mainly interested in the approximation of X by X^j.