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Introduction

•We deal with the dynamical richness of planar discontinuous piece-
wise smooth systems, that is Filippov systems in the plane with
two zones and a straight line as the discontinuity manifold.

• In a recent work [6], it was reported the possibility of concur-
rent homoclinic bifurcation and Hopf bifurcation in the piecewise
smooth system

(ẋ, ẏ) =

{

(1,−2x + 3lx2 + ε1), if y > 0,

(−1 +mx + ny,−x + ε2), if y > 0,
(1)

constituted by a linear plus a quadratic vector field, leading to the
simultaneous generation of two limit cycles. It is assumed n < 0,
l,m ∈ R being ε1, ε2 perturbation terms.

•Here, we show that a richer dynamics can be obtained by con-
sidering just a discontinuous piecewise linear system, where in a
half-plane the dynamics is of focus type while there is a saddle
in the other. Namely, a simultaneous generation of three
limit cycles surrounding the sliding set is shown: one of
the limit cycles comes from a homoclinic connection and the other
two arise from a local bifurcation related to a boundary focus, in
a similar way as it was done in [2].
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Introduction (continued)

•We assume that Σ = {(x, y) : x = 0} is the separation line, so that
the two linearity regions in the phase plane are

S− = {(x, y) : x < 0} , S+ = {(x, y) : x > 0} .

The system becomes

ẋ = A−x + b−, if x ∈ S−, ẋ = A+x + b+, if x ∈ S+, (2)

where x = (x, y)T ∈ R
2, A− = (a−i,j) and A+ = (a+i,j) are real

matrices and b−, b+ are planar vectors. From the initial 12 entries
we can pass to a canonical form with 5 parameters, see [1].

•Proposition 1 If in system (2) a+12a
−
12 < 0, detA+ < 0, and

4 detA−− tr(A−)2 > 0, then after some continuous change of

variables we arrive at the normalized canonical form

ẋ =

(

2γL −1

γ2L + 1 0

)

x−

(

0
aL

)

, if x ∈ S−,

ẋ =

(

2γR −1

γ2R − 1 0

)

x−

(

−b

aR

)

, if x ∈ S+,

(3)

where |γR| < 1.
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Introduction (continued)
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•A direct consequence of Proposition 3.7 in [1] is that a necessary
condition for having a periodic orbit Γ crossing the line x = 0
through the points (0, yL) and (0, yU ) where yU − yL = h > 0, is

2γLσ
− + 2γRσ

+ + bh = 0, (4)

being σ± = area
(

Ω±
)

. As we intend to work for small values of
b, henceforth we assume γLγR < 0. To avoid ambiguity, we take
−1 < γR < 0 and γL > 0.
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Equilibrium points and Homoclinic connections

•The (real or virtual) equilibrium points are a focus at (xL, yL) and
a saddle at (xR, yR), where

xL =
aL

γ2
L
+ 1

, xR =
aR

γ2
R
− 1

,

and yL = 2γLxL and yR = 2γRxR + b.

•The linear invariant manifolds of the right saddle point intersect
Σ at the points

yu = b + (γR + 1)xR, ys = b + (γR − 1)xR.

•We assume in the sequel aR < 0 so that xR > 0.

• For xL = 0, there exists a homoclinic connection if ys = −eπγLyu,
that is for

b = b0H := −xR
eπγL(γR + 1) + γR − 1

1 + eπγL
.

• For xL 6= 0, it is easy to derive the existence of a bifurcation curve
of homoclinic connections in the parameter plane (xL, b) passing
through the point (0, b0H).
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Previous Results (Local bifurcation)

•Next result was proved in [2], improving some results in [4, 5].

Proposition 2Assume γL > 0, aR < 0, γR < 0, in (3).

Then there exist ξ > 0 and two continuous functions η1, η2,

satisfying η1(ε) < η2(ε) < 0 for −ξ < ε < 0, and η1(0) =
η2(0) = 0, such that for the parameter sector defined by −ξ <

xL < 0 and η1(xL) < b < η2(xL) system (3) has at least two
nested crossing periodic orbits that surround the sliding

segment {(0, y) : b ≤ y ≤ 0}.

The periodic orbits have opposite stabilities, the bigger one be-

ing unstable and including in its interior the stable one. When

(xL, b) → (0, 0) within the above sector, both periodic orbits

decrease in size, eventually shrinking to the origin.
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Main Results (Global bifurcation)

Theorem 1Considering system (3) with

−1 < γR < 0, xR > 0, γL =
1

π
ln
(1− γR
1 + γR

)

,

the following statements hold.

(a) For (xL, b) = (0, 0) the origin of the phase plane is an unstable

boundary focus surrounded by an homoclinic connection and

there are no periodic orbits.

(b)The above homoclinic connection persists on the graph of a

curve defined by b = bH(xL) in a neighborhood of the origin

in the parameter plane (xL, b). The local expansion of the

function bH(xL) is given by

b = bH(xL) = 2γLxL −
(1 + γ2L) sinh(πγL)

2xR
x2L + O(x3L).

(c)There exists δ∗ > 0 such that if |xL| < δ∗ then in the transition

from b = bH(xL) to b < bH(xL) we pass from the homoclinic

orbit to a stable crossing periodic orbit.
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Main Results (Local and Global bifurcations)

•Recalling Proposition 2, we can state our final result.

Theorem 2Considering system (3) with

−1 < γR < 0, xR > 0, γL =
1

π
ln
(1− γR
1 + γR

)

> 0,

the following statements hold.

(a) For (xL, b) = (0, 0) the origin of the phase plane is an unsta-

ble boundary focus surrounded by an homoclinic connection

and there are no periodic orbits.

(b)There exist ξ > 0 and two continuous functions η1, η2, satis-

fying η1(ε) < η2(ε) < 0 for −ξ < ε < 0, and η1(0) = η2(0) =
0, such that for the parameter sector defined by −ξ < xL < 0
and η1(xL) < b < η2(xL) system (3) has at least three
nested crossing periodic orbits that surround the slid-

ing segment {(0, y) : b ≤ y ≤ 0}, being the biggest and the

smallest stable and a intermediate one unstable.
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Additional remarks

•Note that the choice of γL in Theorems 1 and 2 is made so that
b0H = 0, and so the curve of homoclinic points passes through the
origin in the parameter plane (xL, b).

• In Proposition 2, the graph of function b = η1(xL) corresponds
to a standard saddle-node bifurcation of crossing periodic orbits,
while the graph of function b = η2(xL) corresponds to a Critical
Crossing limit cycle (CC) bifurcation, leading to the transition of
the inner limit cycle from a crossing to a sliding limit cycle, see [3].

• By moving adequately both parameters xL and b, we can pass
from the upper part of first quadrant (above the homoclinic curve)
to the interior of the sector in the third quadrant, getting the
simultaneous appearance of three limit cycles.
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