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The integrable system

We propose to study perturbation of the generalized Liénard system:

et =y — f()

j= /@ )
Which after the rescaling (z,y,t) — (¢1/2x, ye, £1/2t) becomes

=y — fe(z)

=1l @

This system is integrable of integrand factor e Y.

H(z,y) = e Y[fe(z) —y — 1] = h € [-1, hinga]-

and
y(x) = fe(z) —

is a solution. To simplify the visualization, we represent the level set of H for
e = 1 in the two following examples: a) f(z) = (z+1)x(x—1)(z—3/2)(z—3),
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b) f@) =% - 4.

FIGURE 1: a) Three homoclinic loops bounding three nests, b) A nest
bounded by an heteroclinic loop. Figure retrieved from [1]

Lambert function: It is the reciprocal of the function + — ze*. This
function is not injective but the Lambert function has only two real branches:
the principal branch W and the other 1W_;

FIGURE 2: The two real branches of the Lambert function.

Solution of the integrable system:

I fofw) —y 1) =
<Y+ = felz) =1 -W_ (€f€(>) (3)
y— = felz) =1 —Wo(g hef(z ).

Proposition 1 Any periodic trajectory intersects transversally the critical curve
in exactly two points.

hel-(x)—1

— y(x) = y4(x) above the critical curve y = fo(z) and y(z) = y_(x) below.
We choose to study the system:
. 2 3
ET = Y — 5 — (1)
2
Yy = —x — 0.

FIGURE 3: Phase portrait of system (4) for ¢ = 1.

Canard-induced loss of stability across a homoclinic bifurcation

We now consider the perturbed system

, 2 3
y = —x—a(a— )+ Vep.
After rescaling this yields:
. 2 3
A ©

g = —x— e (a— )+ p.

Numerical simulation (done with XPPAUT (see [4] and [2])). For

0 <a<l10<+e<<land 0 < B < 1 fixed, a small canard cycle is

born by varying 1 across a Hopf bifurcation, for variation of i of the order of
1077 the cycle explodes and disappears across a homoclinic bifurcation.
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FIGURE 4: (a): Small canard cycle. (b): Trajectory with the same initial
condition after explosion. Figure retrieved from [1].

(a) 50 : (b) 1200

= {Ho Y ]
= 900 :
<
g

25| , sool \ 7 ,

3001

5 -150 -100 -50 0 x 50
4
x 10

FIGURE 5: (a): Bifurcation diagram in p. (b): a few limit cycles on the
explosive branch (in blue) shown in panel (a), approaching the homoclinic
connection. Figure retrieved from [1].

= The value of u for which there is a solution which follows the repulsive part
of the critical manifold are given by:

p=06)
U = He+ 55/20'6_%, (7)

pe = —veB(1+d)[1 + o(1)]
for some d € [—2/3,2/3]. We prove it by following the Eckhaus methods (see
[3]). We can compare this result with that obtained in the Van der Pol case:
Let us consider the system

et =y —12/2 — az’/3

(8)

y = —x+ /e
By following the Eckhaus methods we find:
L2
pH= fc T+ 55/206_?7 (9)

e = —Ea+ O(3/2)

We now want to compute the value of i1 for which the cycle explodes. We use
a strategy based on the first return map and the derivative given by an integral
of Lambert function.

Consider the following equations

h=e J

—4 [ f(z)
: E
w = i;( dy — e =
= dh — 6_25( )dm.

The following integral equation holds:

/ W= / dh — / e <8(z)dx, (11)

Y3,k Y. B,h Y. B,h

(—f'(x) — 8(a))da (10)

FIGURE 6: Schema of trajectories in positive and in negative time starting
from an initial condition lying on the y-axis.

Using the parametrization with the Lambert function we obtain the condition:

Lol L(hfr) g [ 2L

Solving this equation with MATHEMATICA for h = e 6a% (level set of the

homoclinic loop) we find a very good approximation of the parameter for which
the loss of stability happens.

Fast deformation of an explicit periodic orbit

Let us consider the integrable system:

i — 1o
._wl%H (13)
U Y 0z

— 1) is the integrating factor associated with the first integral of the system
H. We suppose that for some I, the level set H(x,y) = h € I are closed. Let
us consider the perturbed system

Ty (14)
Yy = —@%ﬂLﬁ[H_h]a

where h € I. = The curve H(x,y) = h is a periodic orbit of the system.

Consider now the system

3

ci =y — (4 +a%p),
L 2 —y/e(fx Yy (15)
Yy = —Tr —ax —|—556 (T—g—l)—h
— For h = —1, the point (0,0) is a center, — For h = hj, = —6_68%, the

1
point (—é,f(—é) — ¢ 6?) is a saddle-node For /e = 0.03125, a = 0.3:
hy, ~ —2.811787299503 s 107524,
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FIGURE 7: Evolution of the trajectory H(x,y) = h for a = 0.3,
Ve = 0.03125 and h takes from left to right and top to bottom the value
b= — 010 h = — 0100 h = — 0300 h = — 0700 h = — 0800
et h=—2.9x 10754

— The upper part of the limit cycle is given by y(h,e,x) = f(x) — e[l +
Wy (Lel ()]
< the maximum height of the cycle y(h,¢) (y(h,e,0)) is given by:

y(h,e) = —e[l + W_y(he D).

— The sup of the limit cycle height (height of the homoclinic loop) is
1
e[l 4+ W_q(—e o) ~ L

Lmax —

—_ 60{2.
—1 1
—e[l+W_q(he™ )] > 0 1 (16)
1 —_
& h > —(1+ 600@25)6 600022

— The amplitude of the cycle mcreases by a ratio of 100 when h covers the

interval |— <1+6OO e 6000425 —e 6a2]
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