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The integrable system

We propose to study perturbation of the generalized Liénard system:

εẋ = y − f (x)
ẏ = −f ′(x) (1)

Which after the rescaling (x, y, t) → (ε1/2x, yε, ε1/2t) becomes

ẋ = y − fε(x)
ẏ = −f ′ε(x)

(2)

This system is integrable of integrand factor e−y.

H(x, y) = e−y[fε(x)− y − 1] = h ∈ [−1, hmax].

and
y(x) = fε(x)− 1

is a solution. To simplify the visualization, we represent the level set of H for
ε = 1 in the two following examples: a) f (x) = (x+1)x(x−1)(x−3/2)(x−3),

b) f (x) = x2

2 − x4

4 .

Figure 1: a) Three homoclinic loops bounding three nests, b) A nest
bounded by an heteroclinic loop. Figure retrieved from [1]

Lambert function: It is the reciprocal of the function x → xex. This
function is not injective but the Lambert function has only two real branches:
the principal branch W0 and the other W−1

Figure 2: The two real branches of the Lambert function.

Solution of the integrable system:

efε(x)−y−1[fε(x)− y − 1] = hefε(x)−1.

→֒ y+ = fε(x)− 1−W−1(
h
ee
fε(x)),

y− = fε(x)− 1−W0(
h
ee
fε(x)).

(3)

Proposition 1 Any periodic trajectory intersects transversally the critical curve

in exactly two points.

→ y(x) = y+(x) above the critical curve y = fε(x) and y(x) = y−(x) below.
We choose to study the system:

εẋ = y − x2

2 − αx
3

3
ẏ = −x− x2α.

(4)

Figure 3: Phase portrait of system (4) for ε = 1.

Canard-induced loss of stability across a homoclinic bifurcation

We now consider the perturbed system

εẋ = y − x2

2 − αx
3

3
ẏ = −x− x2(α− β) +

√
εµ.

(5)

After rescaling this yields:

ẋ = y − x2
2 −

√
εαx

3

3
ẏ = −x−

√
εx2(α− β) + µ.

(6)

Numerical simulation (done with xppaut (see [4] and [2])). For
0 < α < 1, 0 <

√
ε ≪ 1 and 0 < β < 1 fixed, a small canard cycle is

born by varying µ across a Hopf bifurcation, for variation of µ of the order of
10−7 the cycle explodes and disappears across a homoclinic bifurcation.
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Figure 4: (a): Small canard cycle. (b): Trajectory with the same initial
condition after explosion. Figure retrieved from [1].
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Figure 5: (a): Bifurcation diagram in µ. (b): a few limit cycles on the
explosive branch (in blue) shown in panel (a), approaching the homoclinic
connection. Figure retrieved from [1].

⇒ The value of µ for which there is a solution which follows the repulsive part
of the critical manifold are given by:

β = O(ε)

µ = µc + ε5/2σe−
k2

ε ,
µc = −

√
εβ(1 + d)[1 + o(1)]

(7)

for some d ∈ [−2/3, 2/3]. We prove it by following the Eckhaus methods (see
[3]). We can compare this result with that obtained in the Van der Pol case:
Let us consider the system

εẋ = y − x2/2− αx3/3
ẏ = −x +

√
εµ.

(8)

By following the Eckhaus methods we find:

µ = µc + ε5/2σe−
k2

ε ,

µc = −
√
εα +O(ε3/2)

(9)

We now want to compute the value of µ for which the cycle explodes. We use
a strategy based on the first return map and the derivative given by an integral
of Lambert function.
Consider the following equations

h = e−
y
ε

[

f(x)
ε − y

ε − 1
]

ω = e−
y
ε
y−f(x)

ε dy − e−
−y
ε (−f ′(x)− δ(x))dx

= dh− e−
y
εδ(x)dx.

(10)

The following integral equation holds:
∫

γµ,β,h

ω =

∫

γµ,β,h

dh−
∫

γµ,β,h

e−
y
εδ(x)dx, (11)

Figure 6: Schema of trajectories in positive and in negative time starting
from an initial condition lying on the y-axis.

Using the parametrization with the Lambert function we obtain the condition:

L+(h,β,µ)−L−(h,β,µ)
h = β

x+(h)
∫

x−(h)

x2[ 1

W0(
h
ee

f(x)
ε )

− 1

W−1(
h
ee

f(x)
ε )

]dx

+
√
εµ

x+(h)
∫

x−(h)

1

W0(
h
ee

f(x)
ε )

− 1

W−1(
h
ee

f(x)
ε )
dx

+O
(

(
√
εµ, β)2

)

.

(12)

Solving this equation with MATHEMATICA for h = e−
1

6α2ε (level set of the
homoclinic loop) we find a very good approximation of the parameter for which
the loss of stability happens.

Fast deformation of an explicit periodic orbit

Let us consider the integrable system:

ẋ = 1
ψ
∂H
∂y

ẏ = − 1
ψ
∂H
∂x .

(13)

→ ψ is the integrating factor associated with the first integral of the system
H . We suppose that for some I, the level set H(x, y) = h ∈ I are closed. Let
us consider the perturbed system

ẋ = 1
ψ
∂H
∂y

ẏ = − 1
ψ
∂H
∂x + β[H − h],

(14)

where h ∈ I. ⇒ The curve H(x, y) = h is a periodic orbit of the system.

Consider now the system

εẋ = y − (x
2

2 + αx
3

3 ),

ẏ = −x− αx2 + εβ
[

e−y/ε(f(x)ε − y
ε − 1)− h

]

.
(15)

→ For h = −1, the point (0, 0) is a center, → For h = hh = −e−
1

6εα2 , the

point (− 1
α, f (−

1
α) = e−

1
6α2) is a saddle-node For

√
ε = 0.03125, α = 0.3:

hh ≃ −2.811787299503 ∗ 10−824.

Figure 7: Evolution of the trajectory H(x, y) = h for α = 0.3,√
ε = 0.03125 and h takes from left to right and top to bottom the value

h = −10−10, h = −10−100, h = −10−300, h = −10−700, h = −10−800

et h = −2.9× 10−824

→ The upper part of the limit cycle is given by y(h, ε, x) = f (x) − ε[1 +

W−1(
h
ee
f(x)ε)]

→֒ the maximum height of the cycle y(h, ε) (y(h, ε, 0)) is given by:

y(h, ε) = −ε[1 +W−1(he
−1)].

→ The sup of the limit cycle height (height of the homoclinic loop) is

Lmax = −ε[1 +W−1(−e
−1− 1

6α2ε)] ≃ 1
6α2.

−ε[1 +W−1(he
−1)] ≥ 1

600α2

⇔ h ≥ −(1 + 1
600α2ε

)e−
1

600α2ε
(16)

→֒ The amplitude of the cycle increases by a ratio of 100 when h covers the

interval [−(1 + 1
600α2ε

)e−
1

600α2ε,−e−
1

6α2ε].
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