On the wave length of smooth periodic traveling

waves of the Camassa-Holm equation

Anna Geyer and Jordi Villadelprat

Introduction

The Camassa-Holm equation
Up + 2K Uy — Uppy T+ 3UUy = 2 UpUpy + U Ugpy, (CH)

arises as a two-dimensional shallow water approximation of the Euler equations,
where u(x, t) describes the horizontal velocity component [1, 2, 4]. For traveling
wave solutions u(x,t) = ¢(x — ct) the equation takes the form

0" (o — ) (902’)2 | T+(c—2m)gp—§gp220, (1)

where ¢ is the wave speed and r € R is a constant of integration [5|. We are
interested in smooth periodic traveling wave solutions ¢ of (CH),
which have a unique maximum (crest) and minimum (trough) per period:

wave length A ... the period of a smooth periodic traveling wave .
wave height a .. .the difference between the crest and trough of .

Q: Is there a relationship between the length \ and the height a?

A: Yes! The function A\(a) is well-defined and either unimodal
Oor monotonous.

Main Result

Given c, k with ¢ # —k, there exist real numbers r1 < 1y < 1, < 19 such
that the Camassa-Holm equation (CH) has smooth periodic TWS of the
form o(x — ct) if, and only if, the integration constant r in (1) belongs to
the interval (ry,r5). For such r € (r1,ry), the set of smooth periodic TWS
form a continous family {v.}. parametrized by the wave height a.

The wave length A = A(a) of ¢, satisfies the following:
« If r € (ry,7p,], then A(a) s monotonous increasing.

« If r € (ry,,7p,), then A(a) has a unique critical point (maximum,).

« If r € [ry,,79), then A(a) is monotonous decreasing.

Waves +—— Orbits

i is a smooth periodic solution of (1) if and only if 7, := (w,v) = (¢ — ¢, ¢')
is a periodic orbit of the planar system

a + 26w — 2w? + 10?
w =uv, v = fw =5 ‘. (2)

w
where a:= r—2kc—3¢” and := —(c+k). Every periodic orbit belongs to the
period annulus of a center of (2), which exists if and only if —25* < 3« < 0.
The set of periodic orbits is parametrized by the energy levels of the first
integral of (2), which are diffeomorphic to the wave height a of ¢. Hence,
the set of smooth periodic solutions of (1) forms a continuous family {,},
parametrized by a and the function aA(a) = wave length of ¢, is well-defined.
The wave length A of ¢ equals the period T' of a periodic orbit v, of (2), and
the wave height a is diffeomorphic to the energy levels h of the first integral.
Therefore, the qualitative properties of the function A(a) can be deduced

from the period function T'(h) of the center of (2).

1

References

1] R. Camassa and D.D. Holm. An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett. 71 (1993) 1661-1664.

2] A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa-Holm and
Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192 (2009 ) 165-186.

3] A. Garijo and J. Villadelprat. Algebraic and analytical tools for the study of the period
function. J. Differ. Equ. 257 (2014) 2464-2484.

4] R. Johnson. The classical problem of water waves: a reservoir of integrable and
nearly-integrable equations. J. Nonl. Math. Phys. 10 (2003) 72-92.

5] J. Lenells. Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ. 217
(2005) 393-430.

Qualitative Study of the Period Function

Consider an analytic planar differential system satistying these hypotheses:

The system has a center at the origin,
an analytic first integral of the form

(*) H(z,y) = A(z) + B(z)y + C(x)y* with A(0) = 0,

and its integrating factor K depends only on z.

The function M = 4A55‘B " defines a unique involution o satistying M oo = M
on the projection (xy, z,) on the x-axis of the period annulus around the center
of the system. Given an analytic function f on (zg, x,) \ {0} one can define

its o-balance

Criterion to bound the number of critical periods (see [3]):
Under hypotheses (x) let g = —1 and define
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If the number of zeros of #,(¢;) on (0,x,) isn = 0 and it holds that 1 > n,
then the number of critical periods of the center at the origin of the system
is at most n (counted with multiplicities).

To apply the above criterion, we move the center of (2) to the origin via a
homothetic coordinate transformation and obtain the differential system

2 =y,
!z —32%+y®  with 19::%( 2 1)>0. (3)
p— 4—|——a
Y 2z +09) Ve
System (3) is one-parametric and satisfies hypotheses (%) with B = 0 away
from x = —6. The criterion stated above tacilitates bounds on the number of

critical periods, which vary with ¥. Monotonicity or unimodality of the period
function T'(h) then follows from the sign of T"(h) near its endpoints.
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Figure 1: The period annulus of the center of system (3) with A(x) = 2% — 2.
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Figure 2: Sketch of the graph of the period function T'(h) with ¢ = —1—10 + 1—15 6.
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