On the wave length of smooth periodic traveling waves of the Camassa-Holm equation

Anna Geyer and Jordi Villadelprat

(*)

Introduction

The Camassa-Holm equation

$$u_t + 2\kappa \, u_x - u_{txx} + 3 \, u \, u_x = 2 \, u_x u_{xx} + u \, u_{xxx}, \tag{CH}$$

arises as a two-dimensional shallow water approximation of the Euler equations, where u(x, t) describes the horizontal velocity component [1, 2, 4]. For traveling wave solutions $u(x,t) = \varphi(x - ct)$ the equation takes the form

$$\varphi''(\varphi - c) + \frac{(\varphi')^2}{2} + r + (c - 2\kappa)\varphi - \frac{3}{2}\varphi^2 = 0, \qquad (1)$$

where c is the wave speed and $r \in \mathbb{R}$ is a constant of integration [5]. We are

Qualitative Study of the Period Function

Consider an analytic planar differential system satisfying these hypotheses:

The system has a center at the origin, an analytic first integral of the form

$$H(x, y) = A(x) + B(x)y + C(x)y^2$$
 with $A(0) = 0$

and its integrating factor K depends only on x.

The function $M := \frac{4AC - B^2}{4|C|}$ defines a unique involution σ satisfying $M \circ \sigma = M$ on the projection (x_{ℓ}, \dot{x}_r) on the x-axis of the period annulus around the center of the system. Given an analytic function f on $(x_{\ell}, x_r) \setminus \{0\}$ one can define its σ -balance

interested in smooth periodic traveling wave solutions φ of (CH), which have a unique maximum (crest) and minimum (trough) per period:

wave length λ ... the period of a smooth periodic traveling wave φ . wave height a ... the difference between the crest and trough of φ .

Q: Is there a relationship between the length λ and the height a? **A:** Yes! The function $\lambda(a)$ is well-defined and either unimodal or monotonous.

Main Result

Given c, κ with $c \neq -\kappa$, there exist real numbers $r_1 < r_{b_1} < r_b < r_2$ such that the Camassa-Holm equation (CH) has smooth periodic TWS of the form $\varphi(x-ct)$ if, and only if, the integration constant r in (1) belongs to the interval (r_1, r_2) . For such $r \in (r_1, r_2)$, the set of smooth periodic TWS form a continuous family $\{\varphi_a\}_a$ parametrized by the wave height a.

$$\mathscr{B}_{\sigma}(f)(x) := \frac{f(x) - f(\sigma(x))}{2}$$

Criterion to bound the number of critical periods (see [3]): Under hypotheses (*) let $\mu_0 = -1$ and define

$$\mu_{i} := \left(\frac{1}{2} + \frac{1}{2i-3}\right) \mu_{i-1} + \frac{\sqrt{|C|}M}{(2i-3)K} \left(\frac{K\mu_{i-1}}{\sqrt{|C|}M'}\right)' \quad and \quad \ell_{i} := \frac{K\mu_{i}}{\sqrt{|C|}M'} \quad for \ i \ge 1.$$

If the number of zeros of $\mathscr{B}_{\sigma}(\ell_i)$ on $(0, x_r)$ is $n \ge 0$ and it holds that i > n, then the number of critical periods of the center at the origin of the system is at most n (counted with multiplicities).

To apply the above criterion, we move the center of (2) to the origin via a homothetic coordinate transformation and obtain the differential system

$$\begin{cases} x' = y, \\ y' = -\frac{x - 3x^2 + y^2}{2(x + \vartheta)}, & \text{with } \vartheta := \frac{1}{6} \left(\frac{2}{\sqrt{4 + \frac{6\alpha}{\beta^2}}} - 1 \right) > 0. \end{cases}$$
(3)

System (3) is one-parametric and satisfies hypotheses (*) with B = 0 away from $x = -\theta$. The criterion stated above facilitates bounds on the number of critical periods, which vary with ϑ . Monotonicity or unimodality of the period

The wave length $\lambda = \lambda(a)$ of φ_a satisfies the following: • If $r \in (r_1, r_{b_1}]$, then $\lambda(a)$ is monotonous increasing. • If $r \in (r_{b_1}, r_{b_2})$, then $\lambda(a)$ has a unique critical point (maximum). • If $r \in [r_{b_2}, r_2)$, then $\lambda(a)$ is monotonous decreasing.

Waves \leftrightarrow Orbits

 φ is a smooth periodic solution of (1) if and only if $\gamma_{\varphi} := (w, v) = (\varphi - c, \varphi')$ is a periodic orbit of the planar system

$$v' = v, \quad v' = -\frac{\alpha + 2\beta w - \frac{3}{2}w^2 + \frac{1}{2}v^2}{w}, \tag{2}$$

where $\alpha := r - 2\kappa c - \frac{1}{2}c^2$ and $\beta := -(c + \kappa)$. Every periodic orbit belongs to the period annulus of a center of (2), which exists if and only if $-2\beta^2 < 3\alpha < 0$. The set of periodic orbits is parametrized by the energy levels of the first integral of (2), which are diffeomorphic to the wave height a of φ . Hence, the set of smooth periodic solutions of (1) forms a continuous family $\{\varphi_a\}_a$ parametrized by a and the function $a\lambda(a)$ = wave length of φ_a is well-defined. The wave length λ of φ equals the period T of a periodic orbit γ_{φ} of (2), and the wave height a is diffeomorphic to the energy levels h of the first integral.

function T(h) then follows from the sign of T'(h) near its endpoints.

Figure 1: The period annulus of the center of system (3) with $A(x) = \frac{1}{2}x^2 - x^3$.

Therefore, the qualitative properties of the function $\lambda(a)$ can be deduced from the **period function** T(h) of the center of (2).

Figure 2: Sketch of the graph of the period function T(h) with $\overline{\vartheta} = -\frac{1}{10} + \frac{1}{15}\sqrt{6}$.

References

- [1] R. Camassa and D.D. Holm. An integrable shallow water equation with peaked solitons. *Phys. Rev. Lett.* 71 (1993) 1661–1664.
- [2] A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192 (2009) 165–186.
- [3] A. Garijo and J. Villadelprat. Algebraic and analytical tools for the study of the period function. J. Differ. Equ. 257 (2014) 2464–2484.
- [4] R. Johnson. The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. J. Nonl. Math. Phys. 10 (2003) 72–92.
- [5] J. Lenells. Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ. 217 (2005) 393–430.

Acknowledgements

A.G. is supported by the FWF project J3452 "Dynamical Systems Methods in Hydrodynamics" of the Austrian Science Fund. J.V. is partially supported by the MEC/FEDER grant MTM2008-03437.

Contact Information

Anna Geyer: annageyer@mat.uab.cat Universitat Autónoma de Barcelona, Spain Jordi Villadelprat: Jordi.Villadelprat@urv.cat, Universitat Rovira i Virgili, Tarragona, Spain

The contents of this poster will appear in J. Differ. Equ. (2015)