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Introduction

The Camassa-Holm equation
ut + 2κux − utxx + 3uux = 2uxuxx + uuxxx, (CH)

arises as a two-dimensional shallow water approximation of the Euler equations,
where u(x, t) describes the horizontal velocity component [1, 2, 4]. For traveling
wave solutions u(x, t) = ϕ(x− c t) the equation takes the form

ϕ′′(ϕ− c) + (ϕ′)2

2 + r + (c− 2κ)ϕ− 3
2ϕ

2 = 0, (1)

where c is the wave speed and r ∈ R is a constant of integration [5]. We are
interested in smooth periodic traveling wave solutions ϕ of (CH),
which have a unique maximum (crest) and minimum (trough) per period:

wave length λ . . . the period of a smooth periodic traveling wave ϕ.
wave height a . . . the difference between the crest and trough of ϕ.

Q: Is there a relationship between the length λ and the height a?
A: Yes! The function λ(a) is well-defined and either unimodal

or monotonous.

Main Result

Given c, κ with c 6= −κ, there exist real numbers r1 < rb1 < rb2 < r2 such
that the Camassa-Holm equation (CH) has smooth periodic TWS of the
form ϕ(x− c t) if, and only if, the integration constant r in (1) belongs to
the interval (r1, r2). For such r ∈ (r1, r2), the set of smooth periodic TWS
form a continous family {ϕa}a parametrized by the wave height a.

The wave length λ = λ(a) of ϕa satisfies the following:
• If r ∈ (r1, rb1], then λ(a) is monotonous increasing.
• If r ∈ (rb1, rb2), then λ(a) has a unique critical point (maximum).
• If r ∈ [rb2, r2), then λ(a) is monotonous decreasing.

Waves ←→ Orbits

ϕ is a smooth periodic solution of (1) if and only if γϕ := (w, v) = (ϕ− c, ϕ′)
is a periodic orbit of the planar system

w′ = v, v′ = −α + 2βw − 3
2w

2 + 1
2 v

2

w
, (2)

where α := r−2κc− 1
2c

2 and β := −(c+κ). Every periodic orbit belongs to the
period annulus of a center of (2), which exists if and only if −2β2 < 3α < 0.
The set of periodic orbits is parametrized by the energy levels of the first
integral of (2), which are diffeomorphic to the wave height a of ϕ. Hence,
the set of smooth periodic solutions of (1) forms a continuous family {ϕa}a
parametrized by a and the function aλ(a) = wave length of ϕa is well-defined.
The wave length λ of ϕ equals the period T of a periodic orbit γϕ of (2), and
the wave height a is diffeomorphic to the energy levels h of the first integral.
Therefore, the qualitative properties of the function λ(a) can be deduced
from the period function T (h) of the center of (2).

Qualitative Study of the Period Function

Consider an analytic planar differential system satisfying these hypotheses:

(∗)

The system has a center at the origin,
an analytic first integral of the form

H(x, y) = A(x) + B(x)y + C(x)y2 with A(0) = 0,
and its integrating factor K depends only on x.

The functionM := 4AC−B2

4|C| defines a unique involution σ satisfyingM ◦σ = M

on the projection (x`, xr) on the x-axis of the period annulus around the center
of the system. Given an analytic function f on (x`, xr) \ {0} one can define
its σ-balance

Bσ(f )(x) := f (x)− f (σ(x))
2 .

Criterion to bound the number of critical periods (see [3]):
Under hypotheses (∗) let µ0 = −1 and define

µi :=
(1

2 + 1
2i−3

)
µi−1 +

√
|C|M

(2i−3)K

(
Kµi−1√
|C|M ′

)′
and `i := Kµi√

|C|M ′
for i > 1.

If the number of zeros of Bσ(`i) on (0, xr) is n > 0 and it holds that i > n,
then the number of critical periods of the center at the origin of the system
is at most n (counted with multiplicities).

To apply the above criterion, we move the center of (2) to the origin via a
homothetic coordinate transformation and obtain the differential system

x′ = y,

y′ = −x− 3x2 + y2

2(x + ϑ) ,
with ϑ := 1

6

(
2√

4+6α
β2
− 1

)
> 0. (3)

System (3) is one-parametric and satisfies hypotheses (∗) with B = 0 away
from x = −θ. The criterion stated above facilitates bounds on the number of
critical periods, which vary with ϑ. Monotonicity or unimodality of the period
function T (h) then follows from the sign of T ′(h) near its endpoints.

Figure 1: The period annulus of the center of system (3) with A(x) = 1
2x

2 − x3.

Figure 2: Sketch of the graph of the period function T (h) with ϑ̄ = − 1
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