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ABSTRACT
The planar differential system ẋ = P (x, y), ẏ = Q(x, y), with P,Q ∈ C[x, y] is called quasi–homogeneous if there exist s1, s2, d ∈ N such that for an arbitrary α ∈ R+, it is verified
that P (αs1x, αs2y) = αs1−1+dP (x, y) and Q(αs1x, αs2y) = αs2−1+dQ(x, y). The quasi-homogeneous systems have important properties (for example, all of them are integrable)
and they have been studied from many different points of view (integrability, centers, normal forms, limit cycles). But until recently there was not an algorithm for constructing all the
quasi-homogeneous polynomial differential systems of a given degree which was obtained in [1] that we recall here. Using this algorithm the same authors obtained the classification
of the quasi-homogeneous planar systems of degree 2 and 3, and later other authors solve the case of degrees 4 (see [3]) and 5 (see [4]). In our work we obtain the exact number
of different forms of quasi-homogeneus but nonhomogeneous planar differential systems of an arbitrary degree n, proving a nice relation between this number and the Euler’s totient
function whose definition and properties can be seen in [2].

1. BASIC DEFINITIONS
A polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y),

of degree n = max{deg(P ), deg(Q)} is called quasi–homogeneous (in short, QH-system) if
there exist s1, s2, d ∈ N such that for arbitrary α ∈ R+ = {a ∈ R, a > 0}, it is verified that

P (αs1x, αs2y) = αs1−1+dP (x, y),

Q(αs1x, αs2y) = αs2−1+dQ(x, y).

We call the vector w = (s1, s2, d) weight vector of the system, where s1 and s2 are weight
exponents of the system, and d weight degree with respect to s1 and s2.
We say that the weight vector wm = (s∗1, s

∗
2, d
∗) is the minimun weight vector of the system

if any weight vector w = (s1, s2, d) verifies s∗1 ≤ s1, s∗2 ≤ s2 and d∗ ≤ d.

2. FIRST RESULTS ABOUT QH-SYSTEMS
We consider a vector field X = (P,Q) associated to a QH-system of degree n and let w =
(s1, s2, d) be a weight vector of X. We have proved that:

• If s1 = s2, then X is a homogeneous system and wm = (1, 1, n).

• If s1 6= s2, there is p ∈ {0, . . . , n} such that the homogeneous part of highest degree of
X is

Xp
n = (ap,n−px

pyn−p, bp−1,n−p+1x
p−1yn−p+1)

and the following equation holds:
e0p[0] ≡ (p− 1)s1 + (n− p)s2 + 1− d = 0.

Moreover, if the homogeneous part of X of degree n − t is nonzero, then there is k ∈
{1, . . . , n− t− p+ 1} such that

Xp,k
n−t = (ap+k,n−p−k−tx

p+kyn−p−k−t, bp+k−1,n−p−k−t+1x
p+k−1yn−p−k−t+1)

and the next equation is verified:
etp[k] ≡ (p+ k − 1)s1 + (n− t− p− k)s2 + 1− d = 0.

Since the homogeneous systems are well known, in order to obtain all the QH-systems of a fixed
degree, we need to obtain all the quasi-homogeneous but nonhomogeneous systems (hereafter,
QHNH-systems) and hence we consider only the case s1 6= s2. Moreover, through an adequate
change of variables, we can restrict our study to the case s1 > s2.

4. THE ALGORITHM
This algorithm allow us to obtain all the QHNH-systems of a fixed degree n that satisfy d > 1 for
all its weight vectors. We remark that, taking into account the above results, each QHNH-system is
associated to a linear system formed by those equations that correspond to nonzero homogeneous
parts of the system.

• Step 1. We choose p ∈ {0, . . . , n} such that Xp
n is the homogeneous part of degree n

of the vector field X. Therefore, the associated equation is e0p[0].

• Step 2. We choose a value t ∈ {1, . . . , n− p} and a value k ∈ {1, . . . , n− t− p+1}
such that the homogeneous part Xp,k

n−t is also nonzero and hence the equation etp[k] holds.
These values allow us to obtain the minimum weight vector wm, and also provide the weight
exponents s1 and s2 as a function of d (see Section 3).

• Step 3. In order to determine all the homogeneous parts that can be added toXp
n andXp,k

n−t,
we establish, for each t∗ ∈ {1, . . . , n−p} with t 6= t∗, the value kt∗ ∈ {1, . . . , n−t∗−
p + 1}, (if it exists), such that the equation et

∗

p [kt∗ ] satisfies the compatibility condition
with the equations e0p[0] and e

t
p[k].

• Step 4. We obtain the QHNH-vector field of degree n formed by all the homogeneous parts
of the above steps, namely

X = Xp
n +Xp,k

n−t +
∑

t∗∈{1,...,n−p}\{t} and kt∗t=kt∗

Xp,kt∗
n−t∗ ,

where the explicit expression of each homogeneous part is defined in Section 2.

• Step 5. We go back to Step 2 and consider other choices of t and k. As soon as that is
not possible, we change in Step 1 the value of p and repeat the whole process.

3. PROPERTIES OF THE QHNH-SYSTEMS
Let w = (s1, s2, d) be a weight vector of a QHNH-system.

Case 1: d=1. We have proved that the general expression of the n-degree system in this case is
ẋ = a1,0x+ a0,ny

n, ẏ = b0,1y.

Furthermore it is verified that wm = (n, 1, 1).

Case 2: d>1. If X is a vector field associated to a QHNH-system of degree n, then there exist
p, t, k such that Xp

nX
p,k
n−t 6= 0. Therefore e0p[0] and e

t
p[k] holds and, by solving this linear

system, it can be obtained that
s1 = (t+ k)(d− 1)/D, s2 = k(d− 1)/D,

where D = (p− 1)t+ (n− 1)k.
Also, the minimum weight vector of X is

wm = ((t+ k)/s, k/s, 1 +D/s),

where s is the greatest common divisor of t and k.
In order thatX to have other nonzero homogeneous part we must consider other equation et

∗

p [k∗].
We have proved that this third equation is compatible with the two previous equations if and only
if

kt∗ = k∗t.

5. COUNTING OF QHNH-SYSTEMS

Let c (n) the number of QHNH-systems of degree n. Then c (1) = 0, c (2) = 3, c (3) = 8
and for n ≥ 4 we have the recursive form

c (n) = 2c (n− 1)− c (n− 2) + ϕ (n+ 1)

that can be written in analitic form as

c (n) = 5n− 7 +
n∑

k=4

k+1∑
j=5

ϕ (j)

where ϕ is the Euler´s totient function (see [4]) defined by:
ϕ (n) = | {r ∈ N : 1 ≤ r ≤ n , gcd (n, r) = 1} |

The proof of this result takes into account the following aspects:

i) In [1] it has been proved that c (1) = 0, c (2) = 3 and c (3) = 8.

ii) We demonstrated that

c (n) = 1 +

n∑
a=1

m (a) ,

where m(a) is the cardinal of the quotient set of
E (a) =

{
(t, k) ∈ Z+ × Z+ : 2 ≤ t+ k ≤ a+ 1

}
with the equivalence relation defined by

(t, k) ≈ (r, s)⇐⇒ ts = kr.

iii) |
{
(t, k) ∈ Z+ × Z+ : t+ k = a+ 1, gcd (n, r) = 1

}
| = ϕ (a+ 1) and

m (a) = m (a− 1) + ϕ (a+ 1) = c (a)− c (a− 1) .

According into the above result, with a = n and a = n − 1 we obtain the recursive form for
c (n). Finally, if we sum both terms of the recursive form we get the analitic form.
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