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Introduction

Over the last years a renewed interest has appeared in the mathe-
matical community working in differential equations for understanding
the dynamical richness of piecewise smooth systems, because these
systems are widely used to model processes appearing in electronics,
mechanics, economy, etc.

However, the study of the minimal and invariant sets in such systems
have been massively restricted to periodic orbits and other objects of
higher dimension have been poorly studied.

In this work we present a result which provides a sufficient condition
to the existence of bi-dimensional manifolds in a three-dimensional
piecewise smooth system and present a simple case of a piecewise
linear smooth system presenting invariant cylinder and cones filled up
by periodic orbits.

1. Main Results

We consider the differential system

ẋ = −y,
ẏ = x,

ż = h(x, y),

(1)

and note that the cylinders Cρ = {(x, y, z) ∈ R3 : x2 + y2 =
√
ρ}

are invariant sets for system (1) for all positive values of ρ.

By performing a small perturbation of system (1) we verify the exis-
tence of cylinder, cones, as well as some compact bi-dimensional mani-
folds as spheres and torus. The results are obtained using the averaging
theory. Moreover, in order to obtain more than invariance but periodic
behavior on the cylinders we will assume that function h satisfies

h(x, y) = ϕ(x2 + y2)h(x, y),

where h(x, y) = xφ(x2, y2) + xy χ(x2, y2) + y ψ(x2, y2) with φ, χ
and ψ are polynomial functions and ϕ : R −→ R is any continuous
function.

Consider now a perturbation of system (1) into the polynomials g± =
(p±, q±, r±) given by

p±(x, y, z) =
∑

i+j+k≤m
a±ijkx

iyjzk,

q±(x, y, z) =
∑

i+j+k≤n
b±ijkx

iyjzk,

r±(x, y, z) =
∑

i+j+k≤p
c±ijkx

iyjzk,

(2)

with i, j, k ∈ N and aijk, bijk, cijk ∈ R, ∀i, j, k ∈ N. Consider also
the function g(x, y, z) given by

1

2
(g+(x, y, z) + g−(x, y, z)) +

sgn(y)

2
(g+(x, y, z)− g−(x, y, z)).

Of course, the expression of function g depends on the region which
we are dealing with. Indeed, consider the codimension one manifold
M of R2 given by M = H−1(0), where H : R3 −→ R is given by
H(x, y, z) = y. Consider also the sets M+ = {(x, y, z)R3; y ≥ 0}
and M+ = {(x, y, z)R3; y ≤ 0}. In this case we get g(p) = g+(p) if
p ∈ M+ and g(p) = g−(p) if p ∈ M− for each p ∈ R3. Thus the
perturbation of system (1) through the non-smooth function g leads
to the piecewise smooth system

Ẋε = f (t,X) + εg(X), (3)

where f (t,X) is the vector field of system (1), X = (x, y, z) and ε
is a small parameter. We consider the function

F (r, z) =
∫ π

0
[p+(ϑ) cos θ+q+(ϑ) sin θ] dθ+

∫ 2π

π
[p−(ϑ) cos θ+q−(ϑ) sin θ] dθ,

(4)

where

ϑ = ϑ(r, z, θ) =

(

r cos θ, r sin θ, z +

∫ θ

0
h(cos s, sin s)ds

)

.

Then we have the following results. We denote by dB(f, V, b) the
Brouwer degree of function f in a neighborhood V of the point b.

Theorem 1.Consider system (3) and suppose that function h satisfies
(∂h/∂r)(r cos θ, r sin θ) ≡ 0. Moreover, assume that for every z0 ∈
R, the function F (r, z) has a zero r0 = r(z0) such that there exist a
neighborhood V of r0 such that F (r0) 6= 0 for all r0 ∈ V \ {r0} and
dB(F, V, r0) 6= 0. Then, for |ε| sufficiently small, system (3) has a
bi–dimensional manifold M = S1×L, where L = graph(F )∩R2

+ is
a curve defined in the rz-plane.

One should note that function F defined in (4) depend on the degrees
m, n and p of the perturbation g of system (3). Nevertheless, while
Theorem 1 provides a general result which does not depends on the
values of m, n and p, next results give the explicit expression of the
manifolds M depending of these values.

Theorem 2. Under the same hypotheses of Proposition 1, if m =
n = p = 1, then F (r, z) is a straight line in the rz-plane which writes
F (r, z) = Ar +Bz +C, where A, B and C are real constants given
by:

A =
π

2
(a+100 + a−100 + b+010 + b−010),

B = b+001 − b−001,

C = 2(b+000 − b−000) +
π

2
(b+001 + b−001).

Moreover, if A 6= 0, then M is a cone when B 6= 0 and a cylinder
when B = 0 and r > −C/A. If B = 0 and r < −C/A, then M is
the trivial manifold M = ∅.

2. Sketch of the proof

Consider system (3). Since the periodic solutions of system (1), that
we are perturbing, live on the cylinders Cρ, we will perform a cylindrical
change of coordinates in system (3) by introducing the new variables
(z, r, θ) given implicitly by x = r cos θ, y = r sin θ and z = z. In the
new variables (z, r, θ) system (3) writes

ṙ = ε
1

2

[

cos θ[p+(ϑ) + p−(ϑ)] + sin θ[q+(ϑ) + q−(ϑ)]+

cos θ[p+(ϑ)− p−(ϑ)] + sin θ[q+(ϑ)− q−(ϑ)] sgn(r sin θ)
]

,

θ̇ = 1 + ε
1

2r

[

cos θ[q+(ϑ) + q−(ϑ)]− sin θ[p+(ϑ) + p−(ϑ)]+

cos θ[q+(ϑ)− q−(ϑ)] + sin θ[−p+(ϑ) + p−(ϑ)]sgn(r sin θ)
]

ż = h(r cos θ, r sin θ) + ε
1

2

[

r+(ϑ) + r−(ϑ) + (r+(ϑ)− r−(ϑ))

sgn(r sin θ)]
(5)

where ϑ = (r cos θ, r sin θ, z).

Now we change the independent variable t of system (5) to the new
variable θ and obtain the following equivalent system

dr

dθ
= ε

1

2

[

cos θ[p+(ϑ) + p−(ϑ)] + sin θ[q+(ϑ) + q−(ϑ)]+

cos θ[p+(ϑ)− p−(ϑ)] + sin θ[q+(ϑ)− q−(ϑ)]sgn(r sin θ)
]

+ O(ε2),

= εF1(θ, r, z) + O(ε2)
dz

dθ
= h(r cos θ, r sin θ) + ε

1

2

[

r+(ϑ) + r−(ϑ) + (r+(ϑ)− r−(ϑ))

sgn(r sin θ)] + O(ε2)

= h(r cos θ, r sin θ) + εF2(θ, r, z) + O(ε2),
(6)

where again ϑ = (r cos θ, r sin θ, z) and sgn(·) means the sign func-
tion.

From the second equation of system (6), since
(∂h/∂r)(r cos θ, r sin θ) ≡ 0 we have h = h(θ). Thus we
obtain the solution of this equation, as follows.

z(θ) = z0 +

∫ θ

0
h(cos s, sin s)ds + O(ε).

Consequently, replacing this expression into the first equation of sys-
tem (6) we get

dr

dθ
= εF1

(

θ, r, z0 +

∫ θ

0
h(cos s, sin s)ds +O(ε)

)

+ O(ε2)

= εF1

(

θ, r, z0 +

∫ θ

0
h(cos s, sin s)ds

)

+ O(ε2)

(7)

since F1 is polynomial. Finally, in order to apply Theorem 3, we
observe that system (7) satisfies its hypotheses, once every function
of the correspondent vector field is a polynomial and 2π-periodic. For
the same reason, item (i) of Theorem 3 holds.

Now we call

F (r, z) =

∫ 2π

0
F1

(

s, r, z +

∫ s

0
h(cos v, sin v)dv

)

ds.

and observe that function F1 depends on the sign of r sin θ. Conse-
quently, since r > 0, we have

sgn(r sin θ) = sgn(sin θ) =

{

1, 0 < θ < π,

−1, π < θ < 2π.

The discontinuity in cylindrical coordinates is M = H−1(0), where
now H(r, z, θ) = sin θ, that is, θ = π. Therefore function F writes

F (r, z) =

∫ π

0
F1

(

s, r, z +

∫ s

0
h(cos v, sin v)dv

)

ds

+

∫ 2π

π
F1

(

s, r, z +

∫ s

0
h(cos v, sin v)dv

)

ds.

(8)

Following the list of hypotheses of Theorem 3, we see that hypothesis
(ii) is also true since F = F (r, z) is polynomial, so it is C1 (which is a
sufficient condition for bullet (ii), see remark after Theorem 3). Finally,
bullet (iii) of Theorem 3 is also true since (∂H/∂θ)(r, z, θ) = cos θ
which does not vanish on θ = π.

Then, by applying Theorem 3 for the z0-parametric system (7), it
follows that, for |ε| > 0 sufficiently small and for each z0 ∈ R, system
(7) has a 2π-periodic orbit ϕ(θ; r(z0)) such that ϕ(0; r(z0)) → r(z0)
when ε→ 0.

Therefore, coming back to system (6), we obtain that for |ε| > 0
sufficiently small we have a family of periodic orbits depending on the
parameter z0. Nevertheless, once r =

√

x2 + y2, we obtain a bi-
dimensional manifold of codimension one filled by periodic orbits of
the family Cρ of cylinders of system (1).

4. Averaging theory

Theorem 3.We consider the following discontinuous differential sys-
tem

x′(t) = εF (t, x) + ε2R(t, x, ε), (9)

with
F (t, x) = F1(t, x) + sgn(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sgn(h(t, x))R2(t, x, ε),

where F1, F2 : R × D → Rn, R1, R2 : R × D × (−ε0, ε0) → Rn

and h : R × D → R are continuous functions, T–periodic in the
variable t and D is an open subset of Rn. We also suppose that h is
a C1 function having 0 as a regular value. Denote by M = h−1(0),
by Σ = {0} × D * M, by Σ0 = Σ\M 6= ∅, and its elements by
z ≡ (0, z) /∈ M.

Define the averaged function f : D → Rn as

f (x) =

∫ T

0
F (t, x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;

(ii) for a ∈ Σ0 with f (a) = 0, there exist a neighborhood V of a such
that f (z) 6= 0 for all z ∈ V \{a} and dB(f, V, a) 6= 0, (i.e. the
Brouwer degree of f at a is not zero).

(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈ M, then
(

〈∇xh, F1〉2 −〈∇xh, F2〉2
)

(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution
x(·, ε) of system (9) such that x(t, ε) → a as ε→ 0.

We observe that if function f (z) is of class C1 and the Jacobian Jf (a)
is not zero, then dB(f, V, a) 6= 0.
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