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Abstract
The dynamical mechanism underlying the bifurcation of separatrices is revealed for the 1-parameter family (Xk

m)m∈R, where

Xk
m ↔ ẋ = y3 − x2k+1, ẏ = −x +my4k+1, for m ∈ R

and k ≥ 1 an arbitrary but fixed integer. Then the separatrix skeleton for Xk
m for varying m > 0 is determined by the figure on the right.

Recall that the separatrix skeleton is the union of singularities and separatrices. Adding limit cycles to it, it is to say the isolated periodic
orbits, one obtains the extended separatrix skeleton. By the Theorem of Markus, Neumann and Peixoto the extended separatrix skeleton
completely determines the topological structure of continuous planar vector fields having only isolated singular points. In this way, proving
the absence of limit cycles for sufficiently small and sufficiently big m, in these cases we obtain the global phase portraits of Xk

m for arbitrary
k ≥ 1. Furthermore it allows to answer the nilpotent Center/Focus Problem and Hilbert’s 16th Problem for (Xk

m)m∈R. Besides, applying
the result on limit cycles of X1

m from [3], the bifurcation diagram of global phase portraits is completed for (X1
m)m∈R.

m < mC(k) m = mC(k) m > mC(k)

1. Introduction

• For fixed but arbitrary integer k ≥ 1 we aim at analytic understanding of

1. bifurcation of the separatrix skeleton for Xk
m in function of m > 0;

2. rule of separatrix skeleton in bifurcation of limit cycles;

3. Hilbert’s 16th Problem for (Xk
m)m∈R.

• Note: (Xk
m)m>0 is not a semi-complete family of rotated vector fields.

There are three singularities: a nilpotent monodromic singularity and two
symmetric hyperbolic saddles p± that move with m > 0.

• Known results from [3] for k ≥ 1 :

1. for m < mS(k) the origin is a nilpotent attracting focus and for
m > mS(k) it is a repelling focus, withmS(k) ≡ (2k+1)!!/(4k+1)!!!!.

2. Global phase portraits of X1
m up to ‘unicity’ of 2-saddle cycle.

2. Separatrix skeleton for k ≥ 1

Let k ≥ 1. The separatrix skeleton of Xk
m is the union of the singularities

and separatrices of Xk
m.

Theorem 1. [1] For m ≤ 0 the origin is a global attractor of Xk
m. For

increasing m > 0, the separatrix skeleton of Xk
m undergoes a separatrix

bifurcation passing through a unique parameter value mC(k) > 0, giving
rise to three separatrix skeletons as drawn in the right upper corn.

For m = mC(k) the phase portrait of Xk
m exhibits a 2-saddle cycle, that

is broken for m 6= mC(k).

Proof. Techniques based on Poincaré-Bendixson Theorem, Bendixson-Dulac
Theorem (see [3]), rotated vector fields (see Section 3 and [4]), strip flows,
continuous dependence on parameter and initial value, compactification,
desingularisation, Poincaré return map (see [2]).

3. Indefinite rotated vector fields

Lemma. For m > 0 the vector field Xk
m is topologically equivalent to

X
k,R
m ↔ ẋ = y3 − x2k+1, ẏ = m

1

k+1(−x + y4k+1).

The family (X
k,R
m )m>0 is a semi-complete family of indefinitely rotated

vector fields, that is positively rotated in (y3 − x2k+1)(y4k+1 − x) ≥ 0.

Localization of separatrices for X
k,R
m :
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Monotonic movement of separatrices for X
k,R
m with increasing m > 0 :

Proposition. Let k ≥ 1,m > 0. Polycycles and limit cycles of X
k,R
m are

contained in the cube C ≡ [−1,−1]× [−1, 1].

Compactification of the family (X
k,R
m )m>0 :

m = 0 m > 0 m = ∞

4. Small m
Theorem 2. [1] There exists m0(k) > 0 such that Xk

m does not have limit
cycles nor polycycles for m < m0(k). Furthermore, for 0 < m < m0(k),
next figure determines the global phase portrait of Xk

m uniquely up to
topological equivalence.

Proof. Define Vm(x, y) = 2m1/(k+1)x2 + y4 and

M (x, y,m) = 〈X
k,R
m (x, y),∇Vm(x, y)〉 −

2

2k + 1
Vm(x, y)△X

k,R
m (x, y).

Form small enoughM (x, y,m) ≥ 0. Besides, the origin is the only maximal
invariant set contained in M (x, y,m) = 0. Then by a generalization of
Bendixson-Dulac criterion there exists at most one limit cycle or polycycle,
and both cannot coexist. Then stability analysis of the origin/polycycle
leads to the absence of limit cycles for m small enough.

5. Large m

Let k ≥ 1. For m > 0 the vector field Xk
m is topologically equivalent to

Y
k,S
η ↔ ẋ = y3 − ηx2k+1, ẏ = −x + y4k+1, where mη = 1.

Lemma. (Y
k,S
η )0<η≤η0 can analytically be extended to a compact analytic

family (Ŷ
k,S
η )0≤η≤η0 on the Poincaré disc. The global phase portrait of

Ŷ
k,S
0 exhibits a global repeller:

Proof. By compactification on the Poincaré disc and Lypaunov stability’s
theorem considering the sign of derivative of V (x, y) = 2x2 + y4 along

orbits of Y
k,S
0 .

Proposition 3.No large nor medium amplitude limit cycles for η ↓ 0. For
every open ball B0 centered at the origin of R2, there exists η0 > 0 such

that for 0 ≤ η ≤ η0 there are no limit cycles of Ŷ
k,S
η outside B0.

Proposition 4. No small amplitude limit cycles for η ↓ 0. There exists an
open ball B0 centered at the origin of R2 and there exists η1 > 0 such that

for 0 ≤ η < η1 there are no limit cycles of Ŷ
k,S
η starting in B0.

Proof. For η0 sufficiently small the only limit periodic set in the family

(Y
k,S
η )|η|≤η0 is the nilpotent singularity in the origin. To study the cyclicity

at the origin, one considers the Poincaré map of first return using coordi-
nates near the origin from a quasi-homogenous blow up.

Theorem 5. [1]There exists m∞(k) > m0(k) such that Xk
m has no limit

cycles nor polycycles for m > m∞(k). Furthermore, for m > m∞(k), next
figure determines the global phase portrait ofXk

m uniquely up to topological
equivalence.

Proof of Theorem 5. By Propositions 3 and 4 using Roussarie
compactification-localization technique from [5].

6. Center/Focus Problem

A singularity is called a center if it has a punctured neighborhood
full of concentric non-isolated periodic orbits.
The Center/Focus Problem aims at deciding whether a singularity
is a center or a focus.

Theorem 6. [1] Let k ≥ 1 and m = mS(k). The nilpotent
singularity of Xk

mS(k)
at the origin is a focus and not a center.

Proof. By hyperbolicity of 2-saddle cycle for m = mS(k).

The stability of the origin for m = mS(k) and the bifurcation of
small amplitude limit cycles for m → mS(k) for k ≥ 2 is matter
of a work in progress (in collaboration with Ilker Çolak).

7. Hilbert’s 16th Problem

Hilbert’s 16th Problem asks, if it exists, for the maximal number
of limit cycles of a planar polynomial vector field

ẋ = Pn(x, y), ẏ = Qn(x, y),

only depending on the degree n of the polynomials Pn, Qn. This
problem still is open, even for n = 2.

Theorem 7. [1] For all k ≥ 1 there exists H(k) < ∞ such that
for all m ∈ R the number of limit cycles of Xk

m in the global plane
is bounded by H(k). Furthermore, it is necessary that H(k) ≥ 1.

Proof. By Roussarie compactification-localization technique (see
[5]) and Theorems 2, 5 and 6.

8. Particular case k = 1

Theorem 8. [1,3] There exists a unique 547/1000 < mC(1) <
3/5 such that the bifurcation diagram of global phase portraits of
X1
m in function of m is given in next figure.

0 < m < mC(1) m = mC(1)
no limit cycles nor polycycles hyperbolic 2-saddle cycle

mC(1) < m < 3/5 m ≥ 3/5
1 limit cycle, no polycycles no limit cycles nor polycycles

Proof. Existence of mC(1) in [3] and its uniqueness by Theorem 1.
Bifurcation diagram is completed by Poincaré-Bendixson Theorem.
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