A\textsubscript{k} slow fast systems

HILDEBERTO JARDÓN-KOJAKHMETOV

(in collaboration with H. Broer (University of Groningen) and R. Roussarie (Université de Bourgogne))

University of Groningen, Groningen, The Netherlands

In this poster, we present studies regarding a slow fast system defined as

\[X = \varepsilon(1 + \varepsilon f_1) \frac{\partial}{\partial x_1} + \sum_{i=2}^{k-1} \varepsilon^2 f_i \frac{\partial}{\partial x_i} - \left(z^k + \sum_{i=1}^{k-1} x_i z^{i-1} + \varepsilon f_k \right) \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \tag{1} \]

where the functions \(f_j(x_1, \ldots, x_{k-1}, z, \varepsilon) \), for \(j = 1, \ldots, k \), are smooth and vanish at the origin. The corresponding slow manifold \(S \) is given by

\[S = \left\{ (x, z, \varepsilon) \in \mathbb{R}^{k-1} \times \mathbb{R} \times \mathbb{R} \mid \varepsilon = 0, \ z^k + \sum_{i=1}^{k-1} x_i z^{i-1} = 0 \right\}. \tag{2} \]

The manifold \(S \) is equivalently given as the critical set of an \(A_k \) catastrophe. Hence, we call (1) \(A_k \) slow fast system. The most essential information of \(X \) is contained in “the principal part”

\[F = \varepsilon \frac{\partial}{\partial x_1} + \sum_{i=2}^{k-1} 0 \frac{\partial}{\partial x_i} - \left(z^k + \sum_{i=1}^{k-1} x_i z^{i-1} \right) \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \tag{3} \]

while the rest of the terms may be considered as a perturbation

\[P = \sum_{i=1}^{k-1} \varepsilon^2 f_i \frac{\partial}{\partial x_i} + \varepsilon f_k \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \tag{4} \]

and thus we write \(X = F + P \).

The geometric desingularization method, or blow up (as introduced in [1]), is a successful technique that can be used to study the dynamics of (1) near the origin. However, the unknown perturbation \(P \) presents many challenges in such an analysis. To overcome some of the difficulties posed by the presence of \(P \), we prove that there exists a formal transformation \(\hat{\Phi} : \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1} \) that brings the \(A_k \) slow fast system (1) into its principal part \(F \) [2]. That is
\[\dot{\Phi}_* \dot{X} = F. \] (5)

We exemplify the advantages of the proposed normal form in the case of an \(A_3 \) (cusp) slow fast system [3]. We also point out the key ingredients to understand the local dynamics of all \(A_k \) slow fast systems.

