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In this poster, we present studies regarding a slow fast system defined as
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where the functions f;(x1,...,25-1,2,¢), for j =1,... k, are smooth and vanish
at the origin. The corresponding slow manifold S is given by

k-1
S—{(az,z,e)eRklxRst—O, zk+2xizi1—0}. (2)

1=1

The manifold S is equivalently given as the critical set of an Aj catastrophe.
Hence, we call (1) Ay slow fast system. The most essential information of X is
contained in “the principal part”
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while the rest of the terms may be considered as a perturbation
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and thus we write X = F + P.

The geometric desingularization method, or blow up (as introduced in [1]), is
a successful technique that can be used to study the dynamics of (1) near the
origin. However, the unknown perturbation P presents many challenges in such
an analysis. To overcome some of the difficulties posed by the presence of P, we
prove that there exists a formal transformation ® : R¥1 — RFF! that brings the
Ay, slow fast system (1) into its principal part F' [2]. That is
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We exemplify the advantages of the proposed normal form in the case of an Aj
(cusp) slow fast system [3]. We also point out the key ingredients to understand
the local dynamics of all A, slow fast systems.
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