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We revisit Noether’s theorem on the constants of motion for Lagrangian me-
chanical systems in the ODE case, with some new perspectives on both the the-
oretical and the applied side, in particular nonlocal constants of motion and a
different version of time change.

We also show that the usual Killing-type equations can be adapted to these
extended views, and that the inverse Noether theorem holds also for nonlocal
constant of motion in our sense. We give examples that reappraise the usefulness
of the “on-flow” solutions, as opposed to the “strong” solutions of Killing-type
equations.

Applications are given to Lane-Emden equation, dissipative systems, homoge-
neous potentials, superintegrable systems, Maxwell-Bloch system.
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