Bounding the number of zeros of certain Abelian integrals

Francesc Mañosas and Jordi Villadelprat

CIEM, September 2011
Outline of the talk

- Introduction.
- An embedding problem.
- Zeros of Abelian integrals.
Let \mathcal{E} be a finite-dimensional space of analytic functions on an interval I. If $\dim(\mathcal{E}) = n$, then it is easy to prove that there exist $g \in \mathcal{E}$ with at least $n - 1$ zeros counting multiplicities.
Let \(\mathcal{E} \) be a finite-dimensional space of analytic functions on an interval \(I \). If \(\dim(\mathcal{E}) = n \), then it is easy to prove that there exist \(g \in \mathcal{E} \) with at least \(n - 1 \) zeros counting multiplicities.

\[
\begin{align*}
\alpha_1 f_1(x_1) + \alpha_2 f_2(x_1) + \ldots + \alpha_n f_n(x_1) &= 0, \\
\alpha_1 f_1(x_2) + \alpha_2 f_2(x_2) + \ldots + \alpha_n f_n(x_2) &= 0, \\
& \vdots \\
\alpha_1 f_1(x_{n-1}) + \alpha_2 f_2(x_{n-1}) + \ldots + \alpha_n f_n(x_{n-1}) &= 0,
\end{align*}
\]

The space \(\mathcal{E} \) is Chebyshev if any \(g \in \mathcal{E} \) has at most \(n - 1 \) zeros counting multiplicities. If this upper bound is greater, say \(n + k - 1 \), then \(\mathcal{E} \) is Chebyshev with accuracy \(k \). We study this property in case that the functions in \(\mathcal{E} \) are Abelian integrals.
Let \mathcal{E} be a finite-dimensional space of analytic functions on an interval I. If $\dim(\mathcal{E}) = n$, then it is easy to prove that there exist $g \in \mathcal{E}$ with at least $n - 1$ zeros counting multiplicities.

The space \mathcal{E} is \emph{Chebyshev} if any $g \in \mathcal{E}$ has at most $n - 1$ zeros counting multiplicities.
Let \mathcal{E} be a finite-dimensional space of analytic functions on an interval I. If $\dim(\mathcal{E}) = n$, then it is easy to prove that there exist $g \in \mathcal{E}$ with at least $n - 1$ zeros counting multiplicities.

The space \mathcal{E} is *Chebyshev* if any $g \in \mathcal{E}$ has at most $n - 1$ zeros counting multiplicities. If this upper bound is greater, say $n + k - 1$, then \mathcal{E} is *Chebyshev with accuracy* k.

Let \mathcal{E} be a finite-dimensional space of analytic functions on an interval I. If $\dim(\mathcal{E}) = n$, then it is easy to prove that there exist $g \in \mathcal{E}$ with at least $n - 1$ zeros counting multiplicities.

The space \mathcal{E} is **Chebyshev** if any $g \in \mathcal{E}$ has at most $n - 1$ zeros counting multiplicities. If this upper bound is greater, say $n + k - 1$, then \mathcal{E} is **Chebyshev with accuracy k**. We study this property in case that the functions in \mathcal{E} are **Abelian integrals**.
Let \(f_0, f_1, \ldots, f_{n-1} \) be analytic functions on an interval \(I \).
An embedding problem

Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on an interval I.

Extended complete Chebyshev system

$(f_0, f_1, \ldots, f_{n-1})$ is an extended complete Chebyshev system (in short, ECT-system) on I if, for all $k = 1, 2, \ldots, n$, any nontrivial linear combination

$$\alpha_0 f_0(x) + \alpha_1 f_1(x) + \ldots + \alpha_{k-1} f_{k-1}(x) = 0$$

has at most $k - 1$ isolated zeros on I counted with multiplicities.
An embedding problem

Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on an interval I.

Extended complete Chebyshev system

$(f_0, f_1, \ldots, f_{n-1})$ is an extended complete Chebyshev system (in short, ECT-system) on I if, for all $k = 1, 2, \ldots, n$, any nontrivial linear combination

$$
\alpha_0 f_0(x) + \alpha_1 f_1(x) + \ldots + \alpha_{k-1} f_{k-1}(x) = 0
$$

has at most $k - 1$ isolated zeros on I counted with multiplicities.

(“T” stands for Tchebycheff.)
Let \mathcal{E} be a finite-dimensional space of analytic functions on I such that any $f \in \mathcal{E}$ has at most n zeros on I counted with multiplicities.
An embedding problem

Let \mathcal{E} be a finite-dimensional space of analytic functions on I such that any $f \in \mathcal{E}$ has at most n zeros on I counted with multiplicities.

Note that $1 \leq \dim(\mathcal{E}) \leq n + 1$.
An embedding problem

Let \mathcal{E} be a finite-dimensional space of analytic functions on I such that any $f \in \mathcal{E}$ has at most n zeros on I counted with multiplicities. The problem consists in finding necessary and sufficient conditions for the existence of an ECT-system on I of dimension $n + 1$ whose linear span contains \mathcal{E}.

Note that $1 \leq \dim(\mathcal{E}) \leq n + 1$.
An embedding problem

The result is (almost) true when $\dim(\mathcal{E}) = n + 1$.

Theorem (Mazure)

The ECT-system exists if $\dim(\mathcal{E}) = n + 1$ and I is closed and bounded.

Jordi Villadelprat

Bounding the number of zeros of certain Abelian integrals
An embedding problem

The result is (almost) true when \(\dim(\mathcal{E}) = n + 1 \).

Theorem (Mazure)

The ECT-system exists if \(\dim(\mathcal{E}) = n + 1 \) and \(I \) is closed and bounded.

The result is true when $\dim(\mathcal{E}) = 1$.

Lemma 1

Let f be an analytic function on an open interval I. If f has exactly n zeros on I counted with multiplicities, then there exist $g_0, g_1, \ldots, g_{n-1}$ analytic functions on I such that $(g_0, g_1, \ldots, g_{n-1}, f)$ is an ECT-system on I.
The result is true when \(\text{dim}(\mathcal{E}) = 1 \).

Lemma 1

Let \(f \) be an analytic function on an open interval \(I \). If \(f \) has exactly \(n \) zeros on \(I \) counted with multiplicities, then there exist \(g_0, g_1, \ldots, g_{n-1} \) analytic functions on \(I \) such that \((g_0, g_1, \ldots, g_{n-1}, f)\) is an ECT-system on \(I \).

Our aim in the first part of the talk is to show a (very) partial result for \(\mathcal{E} \) of “arbitrary” dimension.
An embedding problem

The result is true when $\dim(\mathcal{E}) = 1$.

Lemma 1

Let f be an analytic function on an open interval I. If f has exactly n zeros on I counted with multiplicities, then there exist $g_0, g_1, \ldots, g_{n-1}$ analytic functions on I such that $(g_0, g_1, \ldots, g_{n-1}, f)$ is an ECT-system on I.

Our aim in the first part of the talk is to show a (very) partial result for \mathcal{E} of “arbitrary” dimension. First we shall prove Lemma 1.
Lemma 2

Let \((f_0, f_1, \ldots, f_{n-1})\) be an ECT-system on \(I\).

(a) If \(\varphi : L \rightarrow I\) is a diffeomorphism, then
\((f_0 \circ \varphi, f_1 \circ \varphi, \ldots, f_{n-1} \circ \varphi)\) be an ECT-system on \(L\).

(b) If \(g\) is a non-vanishing function on \(I\), then
\((gf_0, gf_1, \ldots, gf_{n-1})\) be an ECT-system on \(I\).
Proof of Lemma 1. Let $a_1 \leq a_2 \ldots \leq a_n$ be the zeros of f. Define

$$g_i(x) = \frac{f(x)}{\prod_{j=i+1}^{n} (x - a_j)} \text{ for } i = 0, 1, \ldots, n - 1,$$

so that g_i has exactly i zeros on I counted with multiplicities. It is clear that by construction

$$\left(\frac{g_0}{g_0}, \ldots, \frac{g_{n-1}}{g_0}, \frac{f}{g_0} \right) = \left(1, x - a_1, (x - a_1)(x - a_2), \ldots, \prod_{i=1}^{n} (x - a_i) \right),$$

and this shows, by (b) in Lemma 2, that $(g_0, \ldots, g_{n-1}, f)$ is an ECT-system on I. ■
An embedding problem

Wronskian

\[
W \left[f_0, f_1, \cdots, f_{k-1} \right] (x) = \det \left(f_j^{(i)}(x) \right)_{0 \leq i, j \leq k-1} \\
= \left| \begin{array}{ccc}
 f_0(x) & \cdots & f_{k-1}(x) \\
 f_1(x) & \cdots & f_{k-1}'(x) \\
 \vdots & & \vdots \\
 f_{k-1}^{(k-1)}(x) & \cdots & f_{k-1}^{(k-1)}(x) \\
\end{array} \right|
\]
Lemma (Howland)

Let f_0, f_1, \ldots, f_n be analytic functions on an open interval I such that $W[f_0, \ldots, f_{n-2}, f_{n-1}]$ does not vanish on I. Then

$$
\left(\frac{W[f_0, \ldots, f_{n-2}, f_n]}{W[f_0, \ldots, f_{n-2}, f_{n-1}]} \right)' = \frac{W[f_0, \ldots, f_n] W[f_0, \ldots, f_{n-2}]}{(W[f_0, \ldots, f_{n-2}, f_{n-1}])^2}.
$$
Problem: Bound the number of zeros of $g \in \langle f_0, f_1, f_2, f_3 \rangle$.

The derivation-division algorithm

...
Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]
The derivation-division algorithm

Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]

\[\Downarrow \text{division (if } f_0 \neq 0)\]
Problem: Bound the number of zeros of $g \in \langle f_0, f_1, f_2, f_3 \rangle$.

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$$

\[\Downarrow\text{ division (if } f_0 \neq 0\text{)}\]

$$\frac{g}{f_0} = \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0}$$
Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]

\[
\downarrow \text{division (if } f_0 \neq 0) \]

\[
\frac{g}{f_0} = \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0}
\]

\[
\downarrow \text{derivation}
\]
The derivation-division algorithm

Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]

\[
\downarrow \text{division (if } f_0 \neq 0) \quad \frac{g}{f_0} = \alpha_0 + \frac{\alpha_1}{f_0} f_1 + \frac{\alpha_2}{f_0} f_2 + \frac{\alpha_3}{f_0} f_3
\]

\[
\downarrow \text{derivation} \quad \left(\frac{g}{f_0} \right)' = \alpha_1 \left(\frac{f_1}{f_0} \right)' + \alpha_2 \left(\frac{f_2}{f_0} \right)' + \alpha_3 \left(\frac{f_3}{f_0} \right)'
\]
The derivation-division algorithm

Problem: Bound the number of zeros of \(g \in < f_0, f_1, f_2, f_3 > \).

\[
\begin{align*}
g &= \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \\
\downarrow \text{division (if } f_0 \neq 0) \\
\frac{g}{f_0} &= \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0} \\
\downarrow \text{derivation} \\
\frac{W[f_0, g]}{f_0^2} &= \alpha_1 \frac{W[f_0, f_1]}{f_0^2} + \alpha_2 \frac{W[f_0, f_2]}{f_0^2} + \alpha_3 \frac{W[f_0, f_3]}{f_0^2}
\end{align*}
\]
Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]

\[
\downarrow \text{ division (if } f_0 \neq 0)\]

\[
\frac{g}{f_0} = \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0}
\]

\[
\downarrow \text{ derivation}\]

\[
\frac{W[f_0, g]}{f_0^2} = \alpha_1 \frac{W[f_0, f_1]}{f_0^2} + \alpha_2 \frac{W[f_0, f_2]}{f_0^2} + \alpha_3 \frac{W[f_0, f_3]}{f_0^2}
\]
The derivation-division algorithm

Problem: Bound the number of zeros of \(g \in \langle f_0, f_1, f_2, f_3 \rangle \).

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3
\]

\[
\downarrow \text{division (if } f_0 \neq 0)\]

\[
\frac{g}{f_0} = \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0}
\]

\[
\downarrow \text{derivation}\]

\[
W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3]
\]
The derivation-division algorithm

Problem: Bound the number of zeros of $g \in \langle f_0, f_1, f_2, f_3 \rangle$.

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$$

\Downarrow division (if $f_0 \neq 0$)

$$\frac{g}{f_0} = \alpha_0 + \alpha_1 \frac{f_1}{f_0} + \alpha_2 \frac{f_2}{f_0} + \alpha_3 \frac{f_3}{f_0}$$

\Downarrow derivation

$$W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3]$$

Then, $\# \{ \text{zeros of } g \} \leq \# \{ \text{zeros of } W[f_0, g] \} + 1$.
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\downarrow \text{division (if } W[f_0, f_1] \neq 0) \]
The derivation-division algorithm

\[
W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3]
\]

\[\Downarrow\] division (if \(W[f_0, f_1] \neq 0\))

\[
\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]}
\]
The derivation-division algorithm

\[
W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3]
\]

\[
\downarrow \text{division (if } W[f_0, f_1] \neq 0) \]

\[
\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]}
\]

\[
\downarrow \text{derivation}
\]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\downarrow \text{division (if } W[f_0, f_1] \neq 0) \]

\[\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]} \]

\[\downarrow \text{derivation} \]

\[\left(\frac{W[f_0, g]}{W[f_0, f_1]} \right)' = \alpha_2 \left(\frac{W[f_0, f_2]}{W[f_0, f_1]} \right)' + \alpha_3 \left(\frac{W[f_0, f_3]}{W[f_0, f_1]} \right)' \]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\(\Downarrow \) division (if \(W[f_0, f_1] \neq 0 \))

\[\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]} \]

\(\Downarrow \) derivation

\[\frac{W[f_0, f_1, g] f_0}{W[f_0, f_1]^2} = \alpha_2 \frac{W[f_0, f_1, f_2] f_0}{W[f_0, f_1]^2} + \alpha_3 \frac{W[f_0, f_1, f_3] f_0}{W[f_0, f_1]^2} \]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\downarrow \text{division (if } W[f_0, f_1] \neq 0) \]

\[\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]} \]

\[\downarrow \text{derivation} \]

\[\frac{W[f_0, f_1, g]f_0}{W[f_0, f_1]^2} = \alpha_2 \frac{W[f_0, f_1, f_2]f_0}{W[f_0, f_1]^2} + \alpha_3 \frac{W[f_0, f_1, f_3]f_0}{W[f_0, f_1]^2} \]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\Downarrow \text{division (if } W[f_0, f_1] \neq 0) \]

\[\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]} \]

\[\Downarrow \text{derivation} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]
The derivation-division algorithm

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\downarrow \text{ division (if } W[f_0, f_1] \neq 0) \]

\[\frac{W[f_0, g]}{W[f_0, f_1]} = \alpha_1 + \alpha_2 \frac{W[f_0, f_2]}{W[f_0, f_1]} + \alpha_3 \frac{W[f_0, f_3]}{W[f_0, f_1]} \]

\[\downarrow \text{ derivation} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

Then, \(\# \{ \text{zeros of } g \} \leq \# \{ \text{zeros of } W[f_0, f_1, g] \} + 2 \).
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{ division (if } W[f_0, f_1, f_2] \neq 0) \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{ division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]
The derivation-division algorithm

\[
\begin{align*}
W[f_0, f_1, g] &= \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \\
\downarrow \text{division (if } W[f_0, f_1, f_2] \neq 0) \\
\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} &= \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \\
\downarrow \text{derivation}
\end{align*}
\]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\downarrow \text{division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]

\[\downarrow \text{derivation} \]

\[\left(\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} \right)' = \alpha_3 \left(\frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \right)' \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\downarrow \text{division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]

\[\downarrow \text{derivation} \]

\[\frac{W[f_0, f_1, f_2, g]W[f_0, f_1]}{W[f_0, f_1, f_2]^2} = \alpha_3 \frac{W[f_0, f_1, f_2, f_3]W[f_0, f_1]}{W[f_0, f_1, f_2]^2} \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]

\[\Downarrow \text{derivation} \]

\[\frac{W[f_0, f_1, f_2, g]W[f_0, f_1]}{W[f_0, f_1, f_2]^2} = \alpha_3 \frac{W[f_0, f_1, f_2, f_3]W[f_0, f_1]}{W[f_0, f_1, f_2]^2} \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\downarrow \quad \text{division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]

\[\downarrow \quad \text{derivation} \]

\[W[f_0, f_1, f_2, g] = \alpha_3 W[f_0, f_1, f_2, f_3] \]
The derivation-division algorithm

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{ division (if } W[f_0, f_1, f_2] \neq 0) \]

\[\frac{W[f_0, f_1, g]}{W[f_0, f_1, f_2]} = \alpha_2 + \alpha_3 \frac{W[f_0, f_1, f_3]}{W[f_0, f_1, f_2]} \]

\[\Downarrow \text{ derivation} \]

\[W[f_0, f_1, f_2, g] = \alpha_3 W[f_0, f_1, f_2, f_3] \]

Then, \#\{zeros of } g\} \leq \#\{zeros of } W[f_0, f_1, f_2, f_3]\} + 3. \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\Downarrow \text{ division-derivation} \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\Downarrow \text{division-derivation} \]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]
In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[
\Downarrow \text{ division-derivation}
\]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[
\Downarrow \text{ division-derivation}
\]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\Downarrow \text{division-derivation} \]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\Downarrow \text{division-derivation} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\Downarrow \text{ division-derivation} \]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\Downarrow \text{ division-derivation} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{ division-derivation} \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\downarrow \text{division-derivation} \]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\downarrow \text{division-derivation} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\downarrow \text{division-derivation} \]

\[W[f_0, f_1, f_2, g] = \alpha_3 W[f_0, f_1, f_2, f_3] \]
The derivation-division algorithm

In short,

\[g = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 \]

\[\Downarrow \text{derivation-division} \]

\[W[f_0, g] = \alpha_1 W[f_0, f_1] + \alpha_2 W[f_0, f_2] + \alpha_3 W[f_0, f_3] \]

\[\Downarrow \text{derivation-division} \]

\[W[f_0, f_1, g] = \alpha_2 W[f_0, f_1, f_2] + \alpha_3 W[f_0, f_1, f_3] \]

\[\Downarrow \text{derivation-division} \]

\[W[f_0, f_1, f_2, g] = \alpha_3 W[f_0, f_1, f_2, f_3] \]
Lemma (Karlin-Studden)

\((f_0, f_1, \ldots, f_{n-1})\) is an ECT-system on \(L\) if and only if, for each \(k = 1, 2, \ldots, n\), it holds

\[W[f_0, f_1, \ldots, f_{k-1}](x) \neq 0 \text{ for all } x \in L. \]
An embedding problem

The following is a (very) partial result on the embedding problem.

Theorem A

Let \(f_0, f_1, \ldots, f_{n-1} \) and \(h \) be analytic functions on \(I \) such that:

(a) \(W[f_0, f_1, \ldots, f_k] \) is non-vanishing on \(I \) for \(k = 0, 1, \ldots, n-1 \) (i.e., such that \((f_0, f_1, \ldots, f_{n-1}) \) is an ECT-system on \(I \)), and

(b) \(W[f_0, \ldots, f_{n-1}, h] \) has \(\ell \) zeros on \(I \) counted with multiplicities.

Then there exist \(l_1, l_2, \ldots, l_\ell \) analytic functions on \(I \) such that \((f_0, \ldots, f_{n-1}, l_1, \ldots, l_\ell, h) \) is an ECT-system on \(I \).

Note that (a) and (b) imply that any function in \(\langle f_0, f_1, \ldots, f_{n-1}, h \rangle \) has at most \(n+\ell \) zeros on \(I \) counted with multiplicities.
An embedding problem

The following is a (very) partial result on the embedding problem.

Theorem A

Let $f_0, f_1, \ldots, f_{n-1}$ and h be analytic functions on I such that:

(a) $W[f_0, f_1, \ldots, f_k]$ is non-vanishing on I for $k = 0, 1, \ldots, n-1$ (i.e., such that $(f_0, f_1, \ldots, f_{n-1})$ is an ECT-system on I), and

(b) $W[f_0, \ldots, f_{n-1}, h]$ has ℓ zeros on I counted with multiplicities.

Then there exist l_1, l_2, \ldots, l_ℓ analytic functions on I such that $(f_0, f_1, \ldots, f_{n-1}, l_1, \ldots, l_\ell, h)$ is an ECT-system on I.

Note that (a) and (b) imply that any function in $\langle f_0, f_1, \ldots, f_{n-1}, h \rangle$ has at most $n + \ell$ zeros on I counted with multiplicities.
An embedding problem

The following is a (very) partial result on the embedding problem.

Theorem A

Let \(f_0, f_1, \ldots, f_{n-1} \) and \(h \) be analytic functions on \(I \) such that:

(a) \(W[f_0, f_1, \ldots, f_k] \) is non-vanishing on \(I \) for \(k = 0, 1, \ldots, n - 1 \) (i.e., such that \((f_0, f_1, \ldots, f_{n-1}) \) is an ECT-system on \(I \)), and
The following is a (very) partial result on the embedding problem.

Theorem A

Let $f_0, f_1, \ldots, f_{n-1}$ and h be analytic functions on I such that:

(a) $W[f_0, f_1, \ldots, f_k]$ is non-vanishing on I for $k = 0, 1, \ldots, n - 1$ (i.e., such that $(f_0, f_1, \ldots, f_{n-1})$ is an ECT-system on I), and

(b) $W[f_0, \ldots, f_{n-1}, h]$ has ℓ zeros on I counted with multiplicities.
The following is a (very) partial result on the embedding problem.

Theorem A

Let $f_0, f_1, \ldots, f_{n-1}$ and h be analytic functions on I such that:

(a) $W[f_0, f_1, \ldots, f_k]$ is non-vanishing on I for $k = 0, 1, \ldots, n-1$ (i.e., such that $(f_0, f_1, \ldots, f_{n-1})$ is an ECT-system on I), and

(b) $W[f_0, \ldots, f_{n-1}, h]$ has ℓ zeros on I counted with multiplicities.

Then there exist l_1, l_2, \ldots, l_ℓ analytic functions on I such that $(f_0, \ldots, f_{n-1}, l_1, \ldots, l_\ell, h)$ is an ECT-system on I.
The following is a (very) partial result on the embedding problem.

Theorem A

Let $f_0, f_1, \ldots, f_{n-1}$ and h be analytic functions on I such that:

(a) $W[f_0, f_1, \ldots, f_k]$ is non-vanishing on I for $k = 0, 1, \ldots, n-1$ (i.e., such that $(f_0, f_1, \ldots, f_{n-1})$ is an ECT-system on I), and

(b) $W[f_0, \ldots, f_{n-1}, h]$ has ℓ zeros on I counted with multiplicities.

Then there exist l_1, l_2, \ldots, l_ℓ analytic functions on I such that $(f_0, \ldots, f_{n-1}, l_1, \ldots, l_\ell, h)$ is an ECT-system on I.

Note that (a) and (b) imply that any function in $< f_0, f_1, \ldots, f_{n-1}, h >$ has at most $n + \ell$ zeros on I counted with multiplicities.
An embedding problem

Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system.
Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknowns:
Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknowns:

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \beta_1 l_1 + \beta_2 l_2 + \gamma h$$
Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknowns:

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \beta_1 l_1 + \beta_2 l_2 + \gamma h$$

\[\downarrow \text{division-derivation}\]
An embedding problem

Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknowns:

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \beta_1 l_1 + \beta_2 l_2 + \gamma h$$

$$\Downarrow \text{division-derivation}$$

$$W[f_0, g] = \alpha_1 W[f_0, f_1] + \beta_1 W[f_0, l_1] + \beta_2 W[f_0, l_2] + \gamma W[f_0, h]$$
An embedding problem

Idea of the proof. Set \(n = \ell = 2 \) for simplicity. Thus, given \(f_0, f_1 \) and \(h \) such that \(f_0 \) and \(W[f_0, f_1] \) do not vanish, and that \(W[f_0, f_1, h] \) has 2 zeros on \(I \) counting multiplicities, we must find \(l_1 \) and \(l_2 \) such that \((f_0, f_1, l_1, l_2, h)\) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknows:

\[
g = \alpha_0 f_0 + \alpha_1 f_1 + \beta_1 l_1 + \beta_2 l_2 + \gamma h
\]

\[\Downarrow \text{ division-derivation} \]

\[
W[f_0, g] = \alpha_1 W[f_0, f_1] + \beta_1 W[f_0, l_1] + \beta_2 W[f_0, l_2] + \gamma W[f_0, h]
\]

\[\Downarrow \text{ division-derivation} \]
An embedding problem

Idea of the proof. Set $n = \ell = 2$ for simplicity. Thus, given f_0, f_1 and h such that f_0 and $W[f_0, f_1]$ do not vanish, and that $W[f_0, f_1, h]$ has 2 zeros on I counting multiplicities, we must find l_1 and l_2 such that (f_0, f_1, l_1, l_2, h) is an ECT-system. We apply the derivation-division algorithm taking these functions as unknows:

$$g = \alpha_0 f_0 + \alpha_1 f_1 + \beta_1 l_1 + \beta_2 l_2 + \gamma h$$

\[\downarrow\] division-derivation

$$W[f_0, g] = \alpha_1 W[f_0, f_1] + \beta_1 W[f_0, l_1] + \beta_2 W[f_0, l_2] + \gamma W[f_0, h]$$

\[\downarrow\] division-derivation

$$W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h]$$
An embedding problem

At this stage, by convenience we divide by \(W[f_0, f_1] \), so that

\[
\frac{W[f_0, f_1, g]}{W[f_0, f_1]} = \beta_1 \frac{W[f_0, f_1, l_1]}{W[f_0, f_1]} + \beta_2 \frac{W[f_0, f_1, l_2]}{W[f_0, f_1]} + \gamma \frac{W[f_0, f_1, h]}{W[f_0, f_1]} \tilde{h}
\]
At this stage, by convenience we divide by $W[f_0, f_1]$, so that
\[
\frac{W[f_0, f_1, g]}{W[f_0, f_1]} = \beta_1 \frac{W[f_0, f_1, l_1]}{W[f_0, f_1]} + \beta_2 \frac{W[f_0, f_1, l_2]}{W[f_0, f_1]} + \gamma \frac{W[f_0, f_1, h]}{W[f_0, f_1]}
\]
\[
\tilde{h}
\]

Then, since $\tilde{h} := \frac{W[f_0, f_1, h]}{W[f_0, f_1]}$ has 2 zeros on I counting multiplicities, by Lemma 1 there exist \tilde{l}_1 and \tilde{l}_2 such that $(\tilde{l}_1, \tilde{l}_2, \tilde{h})$ is an ECT-system on I.
An embedding problem

At this stage, by convenience we divide by \(W[f_0, f_1] \), so that

\[
\frac{W[f_0, f_1, g]}{W[f_0, f_1]} = \beta_1 \frac{W[f_0, f_1, l_1]}{W[f_0, f_1]} + \beta_2 \frac{W[f_0, f_1, l_2]}{W[f_0, f_1]} + \gamma \frac{W[f_0, f_1, h]}{W[f_0, f_1]}
\]

Then, since \(\tilde{h} := \frac{W[f_0, f_1, h]}{W[f_0, f_1]} \) has 2 zeros on \(I \) counting multiplicities, by Lemma 1 there exist \(\tilde{l}_1 \) and \(\tilde{l}_2 \) such that \((\tilde{l}_1, \tilde{l}_2, \tilde{h}) \) is an ECT-system on \(I \). (Hence \(\tilde{l}_1, W[\tilde{l}_1, \tilde{l}_2] \) and \(W[\tilde{l}_1, \tilde{l}_2, \tilde{h}] \) do not vanish on \(I \).)
An embedding problem

At this stage, by convenience we divide by $W[f_0, f_1]$, so that

$$
\frac{W[f_0, f_1, g]}{W[f_0, f_1]} = \beta_1 \frac{W[f_0, f_1, l_1]}{W[f_0, f_1]} + \beta_2 \frac{W[f_0, f_1, l_2]}{W[f_0, f_1]} + \gamma \frac{W[f_0, f_1, h]}{W[f_0, f_1]}
$$

Then, since $\tilde{h} := \frac{W[f_0, f_1, h]}{W[f_0, f_1]}$ has 2 zeros on I counting multiplicities, by Lemma 1 there exist \tilde{l}_1 and \tilde{l}_2 such that $(\tilde{l}_1, \tilde{l}_2, \tilde{h})$ is an ECT-system on I. (Hence \tilde{l}_1, $W[\tilde{l}_1, \tilde{l}_2]$ and $W[\tilde{l}_1, \tilde{l}_2, \tilde{h}]$ do not vanish on I.) We choose l_1 and l_2 verifying the second order linear differential equations

$$
\frac{W[f_0, f_1, l_1]}{W[f_0, f_1]} = \tilde{l}_1 \quad \text{and} \quad \frac{W[f_0, f_1, l_2]}{W[f_0, f_1]} = \tilde{l}_2.
$$
We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]
An embedding problem

We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]

\[\downarrow \text{division-derivation} \quad (\tilde{l}_1 \neq 0) \]
We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]

\[\downarrow \text{ division-derivation } (\tilde{l}_1 \neq 0) \]

\[W[f_0, f_1, l_1, g] = \beta_2 W[f_0, f_1, l_1, l_2] + \gamma W[f_0, f_1, l_1, h] \]
An embedding problem

We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]

\[\Downarrow \text{ division-derivation } (\tilde{l}_1 \neq 0) \]

\[W[f_0, f_1, l_1, g] = \beta_2 W[f_0, f_1, l_1, l_2] + \gamma W[f_0, f_1, l_1, h] \]

\[\Downarrow \text{ division-derivation } (W[\tilde{l}_1, \tilde{l}_2] \neq 0) \]
We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]

\[\downarrow \text{division-derivation } (\tilde{l}_1 \neq 0) \]

\[W[f_0, f_1, l_1, g] = \beta_2 W[f_0, f_1, l_1, l_2] + \gamma W[f_0, f_1, l_1, h] \]

\[\downarrow \text{division-derivation } (W[\tilde{l}_1, \tilde{l}_2] \neq 0) \]

\[W[f_0, f_1, l_1, l_2, g] = \gamma W[f_0, f_1, l_1, l_2, h] \]
An embedding problem

We can then continue the derivation-division algorithm

\[W[f_0, f_1, g] = \beta_1 W[f_0, f_1, l_1] + \beta_2 W[f_0, f_1, l_2] + \gamma W[f_0, f_1, h] \]

\[\Downarrow \text{ division-derivation \ (\tilde{l}_1 \neq 0)} \]

\[W[f_0, f_1, l_1, g] = \beta_2 W[f_0, f_1, l_1, l_2] + \gamma W[f_0, f_1, l_1, h] \]

\[\Downarrow \text{ division-derivation \ (W[\tilde{l}_1, \tilde{l}_2] \neq 0)} \]

\[W[f_0, f_1, l_1, l_2, g] = \gamma W[f_0, f_1, l_1, l_2, h] \neq 0 \]

\[(W[\tilde{l}_1, \tilde{l}_2, \tilde{h}] \neq 0) \]
Theorem A

Let $f_0, f_1, \ldots, f_{n-1}$ and h be analytic functions on I such that:

(a) $W[f_0, f_1, \ldots, f_k]$ is non-vanishing on I for $k = 0, 1, \ldots, n - 1$,

(b) $W[f_0, \ldots, f_{n-1}, h]$ has ℓ zeros on I counted with multiplicities.

Then there exist l_1, l_2, \ldots, l_ℓ analytic functions on I such that $(f_0, \ldots, f_{n-1}, l_1, \ldots, l_\ell, h)$ is an ECT-system on I.

Setting $\tilde{h} := \frac{W[f_0, \ldots, f_{n-1}, h]}{W[f_0, \ldots, f_{n-1}]}$, we take $\tilde{l}_1, \tilde{l}_2, \ldots, \tilde{l}_\ell$ such that $(\tilde{l}_1, \ldots, \tilde{l}_\ell, \tilde{h})$ is an ECT-system on I. Then, for $k = 1, 2, \ldots, \ell$, we choose l_k being a solution of the n-th order linear differential equation

$$\frac{W[f_0, \ldots, f_{n-1}, y]}{W[f_0, \ldots, f_{n-1}]} = \tilde{l}_k.$$
Corollary

Consider the n-th order linear differential equation

$$y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_n(x)y = b(x), \quad (1)$$

where a_i and b are analytic on I. Assume that the homogeneous equation has a fundamental set of solutions $(\varphi_0, \varphi_1, \ldots, \varphi_{n-1})$ being an ECT-system on I. Then, if b has k zeros on I counted with multiplicities, any solution of (1) has at most $n + k$ zeros on I counted with multiplicities.
Corollary

Consider the \(n \)-th order linear differential equation

\[
y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_n(x)y = b(x),
\]

(1)

where \(a_i \) and \(b \) are analytic on \(I \). Assume that the homogeneous equation has a fundamental set of solutions \((\varphi_0, \varphi_1, \ldots, \varphi_{n-1})\) being an ECT-system on \(I \). Then, if \(b \) has \(k \) zeros on \(I \) counted with multiplicities, any solution of (1) has at most \(n + k \) zeros on \(I \) counted with multiplicities.

This result is used in [L. Gavrilov, I. Iliev, Quadratic perturbations of quadratic codimension-four centers, J. Math. Anal. Appl. 357 (2009) 69-76] for \(n = 2 \).
Proof. Note that if \(\{\varphi_0, \varphi_1, \ldots, \varphi_{n-1}\} \) is a fundamental set of solutions of \(y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = 0 \), then

\[
y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = \frac{W[\varphi_0, \ldots, \varphi_{n-1}, y]}{W[\varphi_0, \ldots, \varphi_{n-1}]}(x).
\]
Proof. Note that if \(\{\varphi_0, \varphi_1, \ldots, \varphi_{n-1}\} \) is a fundamental set of solutions of \(y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = 0 \), then

\[
y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = \frac{W[\varphi_0, \ldots, \varphi_{n-1}, y]}{W[\varphi_0, \ldots, \varphi_{n-1}]}(x).
\]

Therefore the linear differential equation writes as

\[
\frac{W[\varphi_0, \ldots, \varphi_{n-1}, y]}{W[\varphi_0, \ldots, \varphi_{n-1}]}(x) = b(x).
\]
An embedding problem

Proof. Note that if \(\{\varphi_0, \varphi_1, \ldots, \varphi_{n-1}\} \) is a fundamental set of solutions of \(y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = 0 \), then

\[
y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = \frac{W[\varphi_0, \ldots, \varphi_{n-1}, y]}{W[\varphi_0, \ldots, \varphi_{n-1}]}(x).
\]

Therefore the linear differential equation writes as

\[
\frac{W[\varphi_0, \ldots, \varphi_{n-1}, y]}{W[\varphi_0, \ldots, \varphi_{n-1}]}(x) = b(x).
\]

Accordingly, if \(h \) is a solution, then \(W[\varphi_0, \ldots, \varphi_{n-1}, h] \) has \(k \) zeros on \(I \) counted with multiplicities. Then, by Theorem A, \(h \) belongs to an ECT-system on \(I \) of dimension \(n + k + 1 \).
Let $H(x, y) = A(x) + B(x)y^2$ be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \mathcal{P} foliated by ovals $\gamma_h \subset \{H(x, y) = h\}$ for $h \in (0, h_0)$. The projection of \mathcal{P} on the x-axis is an interval (x_ℓ, x_r) with $x_\ell < 0 < x_r$.

Jordi Villadelprat

Bounding the number of zeros of certain Abelian integrals
Let $H(x, y) = A(x) + B(x)y^2$ be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \mathcal{P} foliated by ovals $\gamma_h \subset \{H(x, y) = h\}$ for $h \in (0, h_0)$. The projection of \mathcal{P} on the x-axis is an interval (x_ℓ, x_r) with $x_\ell < 0 < x_r$.

Clearly, A has a local minimum at $x = 0$, and so there exists an analytic involution σ such that $A(x) = A(\sigma(x))$ for all $x \in (x_\ell, x_r)$. (Recall that an involution is a mapping $\sigma \neq Id$ verifying that $\sigma^2 = Id$.)
Let $H(x, y) = A(x) + B(x)y^2$ be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \mathcal{P} foliated by ovals $\gamma_h \subset \{H(x, y) = h\}$ for $h \in (0, h_0)$. The projection of \mathcal{P} on the x-axis is an interval (x_ℓ, x_r) with $x_\ell < 0 < x_r$.

Clearly, A has a local minimum at $x = 0$, and so there exists an analytic involution σ such that $A(x) = A(\sigma(x))$ for all $x \in (x_\ell, x_r)$. (Recall that an involution is a mapping $\sigma \neq Id$ verifying that $\sigma^2 = Id$.)

Given a function κ defined on $I \setminus \{0\}$, we define its balance as

$$\mathcal{B}_\sigma(\kappa)(x) = \frac{\kappa(x) - \kappa(\sigma(x))}{2}.$$
Let $H(x, y) = A(x) + B(x)y^2$ be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \mathcal{P} foliated by ovals $\gamma_h \subset \{H(x, y) = h\}$ for $h \in (0, h_0)$. The projection of \mathcal{P} on the x-axis is an interval (x_ℓ, x_r) with $x_\ell < 0 < x_r$.

Clearly, A has a local minimum at $x = 0$, and so there exists an analytic involution σ such that $A(x) = A(\sigma(x))$ for all $x \in (x_\ell, x_r)$. (Recall that an involution is a mapping $\sigma \neq Id$ verifying that $\sigma^2 = Id$.)

Given a function κ defined on $I \setminus \{0\}$, we define its balance as

$$B_\sigma(\kappa)(x) = \frac{\kappa(x) - \kappa(\sigma(x))}{2}.$$

For example, if $\sigma = -Id$, then the balance of a function is its odd part.
Zeros of Abelian integrals

Let $H(x, y) = A(x) + B(x)y^2$ be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \mathcal{P} foliated by ovals $\gamma_h \subset \{H(x, y) = h\}$ for $h \in (0, h_0)$. The projection of \mathcal{P} on the x-axis is an interval (x_ℓ, x_r) with $x_\ell < 0 < x_r$.

Clearly, A has a local minimum at $x = 0$, and so there exists an analytic involution σ such that $A(x) = A(\sigma(x))$ for all $x \in (x_\ell, x_r)$. (Recall that an involution is a mapping $\sigma \neq Id$ verifying that $\sigma^2 = Id$.)

Given a function κ defined on $I \setminus \{0\}$, we define its balance as

$$B_\sigma(\kappa)(x) = \frac{\kappa(x) - \kappa(\sigma(x))}{2}.$$

We say that a function g is σ-odd (respectively, σ-even) if $f \circ \sigma = -f$ (respectively, $f \circ \sigma = f$).
Zeros of Abelian integrals

Let \(H(x, y) = A(x) + B(x)y^2 \) be an analytic function in the plane with a local minimum at the origin. Then there exists a period annulus \(\mathcal{P} \) foliated by ovals \(\gamma_h \subset \{ H(x, y) = h \} \) for \(h \in (0, h_0) \). The projection of \(\mathcal{P} \) on the \(x \)-axis is an interval \((x_\ell, x_r) \) with \(x_\ell < 0 < x_r \).

Clearly, \(A \) has a local minimum at \(x = 0 \), and so there exists an analytic involution \(\sigma \) such that \(A(x) = A(\sigma(x)) \) for all \(x \in (x_\ell, x_r) \). (Recall that an involution is a mapping \(\sigma \neq \text{Id} \) verifying that \(\sigma^2 = \text{Id} \).)

Given a function \(\kappa \) defined on \(I \setminus \{0\} \), we define its balance as

\[
\mathcal{B}_\sigma(\kappa)(x) = \kappa(x) - \kappa(\sigma(x)) \frac{2}{2}.
\]

We say that a function \(g \) is \(\sigma \)-odd (respectively, \(\sigma \)-even) if \(f \circ \sigma = -f \) (respectively, \(f \circ \sigma = f \)). Thus, the balance of any function is \(\sigma \)-odd.
Zeros of Abelian integrals

Theorem (Grau-Mañosas-Villadelprat)

Let $I_i(h) := \int_{\gamma_n} f_i(x) y^{2s-1} dx$, $i = 0, 1, \ldots, n - 1$, with $s \geq n - 1$.

Jordi Villadelprat

Bounding the number of zeros of certain Abelian integrals
Theorem (Grau-Mañana-Villadelprat)

Let $I_i(h) := \int_{\gamma_n} f_i(x)y^{2s-1}dx$, $i = 0, 1, \ldots, n - 1$, with $s \geq n - 1$.

Define $\ell_i = \mathcal{B}\sigma\left(\frac{f_i}{A'B^{s-\frac{1}{2}}}\right)$.

The idea is simple. If $W[\ell_0, \ell_1, \ldots, \ell_{i-1}]$ does not vanish on $(0, x_r)$ for all $i = 1, 2, \ldots, n$, then $(I_0, I_1, \ldots, I_{n-1})$ is an ECT-system on $(0, x_0)$. Then we define $J_i(h) := \int_{\gamma_n} g_i(x)y^{2s-1}dx$ and use the above result to show that $(I_0, \ldots, I_{n-2}, J_1, \ldots, J_k, I_{n-1})$ is an ECT-system on $(0, x_0)$.

Zeros of Abelian integrals
Theorem (Grau-Mañosas-Villadelprat)

Let $I_i(h) := \int_{\gamma_h} f_i(x)y^{2s-1}dx$, $i = 0, 1, \ldots, n - 1$, with $s \geq n - 1$.

Define $\ell_i = B_\sigma\left(\frac{f_i}{A'B^{s-\frac{1}{2}}}\right)$. If $W[\ell_0, \ell_1, \ldots, \ell_{i-1}]$ does not vanish on $(0, x_r)$ for all $i = 1, 2, \ldots, n$, then $(I_0, I_1, \ldots, I_{n-1})$ is an ECT-system on $(0, h_0)$.
Theorem (Grau-Mañosas-Villadelprat)

Let \(I_i(h) := \int_{\gamma_h} f_i(x) y^{2s-1} dx \), \(i = 0, 1, \ldots, n - 1 \), with \(s \geq n - 1 \).

Define \(\ell_i = B_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right) \). If \(W[\ell_0, \ell_1, \ldots, \ell_{i-1}] \) does not vanish on \((0, x_r)\) for all \(i = 1, 2, \ldots, n \), then \((I_0, I_1, \ldots, I_{n-1})\) is an ECT-system on \((0, h_0)\).

We shall make an slight improvement of this result for the case that the last Wronskian fails to be non-vanishing.
Theorem (Grau-Mañosas-Villadelprat)

Let $I_i(h) := \int_{\gamma_h} f_i(x)y^{2s-1}dx$, $i = 0, 1, \ldots, n - 1$, with $s \geq n - 1$.

Define $\ell_i = B_{\sigma} \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right)$. If $W[\ell_0, \ell_1, \ldots, \ell_{i-1}]$ does not vanish on $(0, x_r)$ for all $i = 1, 2, \ldots, n$, then $(I_0, I_1, \ldots, I_{n-1})$ is an ECT-system on $(0, h_0)$.

The idea is simple. If $W[\ell_0, \ell_1, \ldots, \ell_{n-1}]$ has k zeros, we apply Theorem A to obtain g_1, g_2, \ldots, g_k such that $(\ell_0, \ldots, \ell_{n-2}, g_1, \ldots, g_k, \ell_{n-1})$ is an ECT-system on $(0, x_r)$.
Zeros of Abelian integrals

Theorem (Grau-Mañosas-Villadelprat)

Let \(I_i(h) := \int_{\gamma h} f_i(x) y^{2s-1} dx, \quad i = 0, 1, \ldots, n-1, \) with \(s \geq n-1. \)

Define \(\ell_i = B_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right). \) If \(W[\ell_0, \ell_1, \ldots, \ell_{i-1}] \) does not vanish on \((0, x_r)\) for all \(i = 1, 2, \ldots, n, \) then \((I_0, I_1, \ldots, I_{n-1})\) is an ECT-system on \((0, h_0)\).

The idea is simple. If \(W[\ell_0, \ell_1, \ldots, \ell_{n-1}] \) has \(k \) zeros, we apply Theorem A to obtain \(g_1, g_2, \ldots, g_k \) such that \((\ell_0, \ldots, \ell_{n-2}, g_1, \ldots, g_k, \ell_{n-1})\) is an ECT-system on \((0, x_r)\). Then we define \(J_i(h) := \int_{\gamma h} g_i(x) y^{2s-1} dx \) and use the above result to show that \((I_0, \ldots, I_{n-2}, J_1, \ldots, J_k, I_{n-1})\) is an ECT-system on \((0, h_0)\).
Following this idea we can prove the following result:

Theorem B

Let \(I_i(h) := \int_{\gamma_h} f_i(x) y^{2s-1} dx, \ i = 0, 1, \ldots, n - 1. \) Define \(\ell_i = \mathcal{B}_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right). \) If the following conditions are verified:

\((a)\) \(W[\ell_0, \ldots, \ell_i] \) is non-vanishing on \((0, x_0)\) for \(i = 0, 1, \ldots, n-2, \)

\((b)\) \(W[\ell_0, \ldots, \ell_{n-1}] \) has \(k \) zeros on \((0, x_0)\) counting multiplicities,

\((c)\) \(s \geq n + k - 1, \)

then any nontrivial linear combination of \(I_0, I_1, \ldots, I_{n-1} \) has at most \(n + k - 1 \) zeros on \((0, h_0)\) counted with multiplicities.
Erasmus de la Prat

Zeros of Abelian integrals

Following this idea we can prove the following result:

Theorem B

Let $I_i(h) := \int_{\gamma_h} f_i(x)y^{2s-1}dx$, $i = 0, 1, \ldots, n - 1$. Define

$$\ell_i = B_\sigma\left(\frac{f_i}{A'B^{s-\frac{1}{2}}}\right).$$

If the following conditions are verified:

(a) $W[\ell_0, \ldots, \ell_i]$ is non-vanishing on $(0, x_r)$ for $i = 0, 1, \ldots, n - 2$,
Following this idea we can prove the following result:

Theorem B

Let \(I_i(h) := \int_{\gamma_h} f_i(x) y^{2s-1} dx, \ i = 0, 1, \ldots, n - 1. \) Define

\[\ell_i = B_{\sigma} \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right). \]

If the following conditions are verified:

(a) \(W[\ell_0, \ldots, \ell_i] \) is non-vanishing on \((0, x_r)\) for \(i = 0, 1, \ldots, n - 2, \)

(b) \(W[\ell_0, \ldots, \ell_{n-1}] \) has \(k \) zeros on \((0, x_r)\) counting multiplicities,
Following this idea we can prove the following result:

Theorem B

Let $I_i(h) := \int_{\gamma_h} f_i(x) y^{2s-1} dx$, $i = 0, 1, \ldots, n - 1$. Define

$$\ell_i = \mathcal{B}_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right).$$

If the following conditions are verified:

(a) $W[\ell_0, \ldots, \ell_i]$ is non-vanishing on $(0, x_r)$ for $i = 0, 1, \ldots, n - 2$,

(b) $W[\ell_0, \ldots, \ell_{n-1}]$ has k zeros on $(0, x_r)$ counting multiplicities,

(c) $s \geq n + k - 1$,

then any nontrivial linear combination of $I_0, I_1, \ldots, I_{n-1}$ has at most $n + k - 1$ zeros on $(0, h_0)$ counted with multiplicities.
Following this idea we can prove the following result:

Theorem B

Let $I_i(h) := \int_{\gamma_h} f_i(x) y^{2s-1} dx$, $i = 0, 1, \ldots, n - 1$. Define

$$\ell_i = B_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right).$$

If the following conditions are verified:

(a) $W[\ell_0, \ldots, \ell_i]$ is non-vanishing on $(0, x_r)$ for $i = 0, 1, \ldots, n - 2$,

(b) $W[\ell_0, \ldots, \ell_{n-1}]$ has k zeros on $(0, x_r)$ counting multiplicities,

(c) $s \geq n + k - 1$,

then any nontrivial linear combination of $I_0, I_1, \ldots, I_{n-1}$ has at most $n + k - 1$ zeros on $(0, h_0)$ counted with multiplicities.
Since A vanishes at $x = 0$ with even multiplicity, say $2m$, the functions

$$
\ell_i = \mathcal{B}_\sigma \left(\frac{f_i}{A'B^s - \frac{1}{2}} \right), \quad i = 0, 1, \ldots, n - 1,
$$

have a pole at $x = 0$ of order $\leq 2m - 1$ Moreover, they are σ-odd.
Since A vanishes at $x = 0$ with even multiplicity, say $2m$, the functions

$$
\ell_i = \mathcal{B}_\sigma \left(\frac{f_i}{A'B^{s-\frac{1}{2}}} \right), \quad i = 0, 1, \ldots, n - 1,
$$

have a pole at $x = 0$ of order $\leq 2m - 1$. Moreover, they are σ-odd. Hence the functions g_1, g_2, \ldots, g_k such that $(\ell_0, \ldots, \ell_{n-2}, g_1, \ldots, g_k, \ell_{n-1})$ is an ECT-system on $(0, x_r)$ must also be σ-odd and have a pole of order at most $2m - 1$.

Since A vanishes at $x = 0$ with even multiplicity, say $2m$, the functions

$$\ell_i = B_\sigma\left(\frac{f_i}{A'B^s-\frac{1}{2}}\right), \quad i = 0, 1, \ldots, n - 1,$$

have a pole at $x = 0$ of order $\leq 2m - 1$. Moreover, they are σ-odd. Hence the functions g_1, g_2, \ldots, g_k such that $(\ell_0, \ldots, \ell_{n-2}, g_1, \ldots, g_k, \ell_{n-1})$ is an ECT-system on $(0, x_r)$ must also be σ-odd and have a pole of order at most $2m - 1$. Thus, we need to a similar result to Theorem A for functions with these properties.
The key point to solve this problem is the following result, which enables us to suppose without loss of generality that $\sigma = -Id$.

Lemma 3

Consider $I = (a, b)$ with $a < 0 < b$ and let σ be an analytic involution on I such that $\sigma(0) = 0$. Define $\phi(x) = x - \sigma(x)$, i.e., $\phi = B_{\sigma}(Id)$. Then ϕ is a diffeomorphism from I to $(a - b^2, b - a^2)$. Moreover an analytic function f on I is σ-odd if, and only if, $f \circ \phi^{-1}$ is odd.
The key point to solve this problem is the following result, which enables us to suppose without loss of generality that $\sigma = -Id$.

Lemma 3

Consider $I = (a, b)$ with $a < 0 < b$ and let σ be an analytic involution on I such that $\sigma(0) = 0$. \[\phi(x) = x - \sigma(x)^2, \] i.e., $\phi = B_{\sigma}(Id)$. Then ϕ is a diffeomorphism from I to $(a - b^2, b - a^2)$. Moreover an analytic function f on I is σ-odd if, and only if, $f \circ \phi^{-1}$ is odd.
The key point to solve this problem is the following result, which enables us to suppose without loss of generality that $\sigma = -Id$.

Lemma 3

Consider $I = (a, b)$ with $a < 0 < b$ and let σ be an analytic involution on I such that $\sigma(0) = 0$. Define $\varphi(x) = \frac{x - \sigma(x)}{2}$, i.e., $\varphi = B_\sigma(Id)$.

Then φ is a diffeomorphism from I to $(\frac{a-b}{2}, \frac{b-a}{2})$.
Zeros of Abelian integrals

The key point to solve this problem is the following result, which enables us to suppose without loss of generality that $\sigma = -Id$.

Lemma 3

Consider $I = (a, b)$ with $a < 0 < b$ and let σ be an analytic involution on I such that $\sigma(0) = 0$. Define $\varphi(x) = \frac{x - \sigma(x)}{2}$, i.e., $\varphi = B_\sigma(Id)$. Then φ is a diffeomorphism from I to $(\frac{a-b}{2}, \frac{b-a}{2})$. Moreover an analytic function f on I is σ-odd if, and only if, $f \circ \varphi^{-1}$ is odd.
Proof of Lemma 3. That \(\varphi \) is a diffeomorphism follows from the fact that an involution is monotonous decreasing.
Proof of Lemma 3. That φ is a diffeomorphism follows from the fact that an involution is monotonous decreasing. Due to $\sigma^2 = Id$, note that $\varphi(\sigma(x)) = -\varphi(x)$, so that $\varphi(\sigma(\varphi^{-1}(x))) = -x$.

Proof of Lemma 3. That \(\varphi \) is a diffeomorphism follows from the fact that an involution is monotonous decreasing. Due to \(\sigma^2 = \text{Id} \), note that \(\varphi(\sigma(x)) = -\varphi(x) \), so that \(\varphi(\sigma(\varphi^{-1}(x))) = -x \). Thus, \(\sigma(\varphi^{-1}(x)) = \varphi^{-1}(-x) \).
Proof of Lemma 3. That \(\varphi \) is a diffeomorphism follows from the fact that an involution is monotonous decreasing. Due to \(\sigma^2 = Id \), note that \(\varphi(\sigma(x)) = -\varphi(x) \), so that \(\varphi(\sigma(\varphi^{-1}(x))) = -x \). Thus, \(\sigma(\varphi^{-1}(x)) = \varphi^{-1}(-x) \). Hence, if \(f \) is \(\sigma \)-odd, then

\[
(f \circ \varphi^{-1})(-x) = f(\varphi^{-1}(-x)) = f(\sigma(\varphi^{-1}(x))) = -(f \circ \varphi^{-1})(x)
\]

and this shows that \(f \circ \varphi^{-1} \) is an odd function.
Proof of Lemma 3. That \(\varphi \) is a diffeomorphism follows from the fact that an involution is monotonous decreasing. Due to \(\sigma^2 = I_d \), note that \(\varphi(\sigma(x)) = -\varphi(x) \), so that \(\varphi(\sigma(\varphi^{-1}(x))) = -x \). Thus, \(\sigma(\varphi^{-1}(x)) = \varphi^{-1}(-x) \). Hence, if \(f \) is \(\sigma \)-odd, then

\[
(f \circ \varphi^{-1})(-x) = f(\varphi^{-1}(-x)) = f(\sigma(\varphi^{-1}(x))) = -(f \circ \varphi^{-1})(x)
\]

and this shows that \(f \circ \varphi^{-1} \) is an odd function. Reciprocally, if \(f \circ \varphi^{-1} \) is odd, then

\[
\mathcal{B}_\sigma(f)(x) = \frac{f(x) - f(\sigma(x))}{2} = \frac{f(x) - f(\varphi^{-1}(-\varphi(x)))}{2} = f(x),
\]

where in the second equality we use that \(\sigma(x) = \varphi^{-1}(-\varphi(x)) \) and in the third one that \(f \circ \varphi^{-1} \) is odd. This proves that \(f \) is \(\sigma \)-odd. \(\blacksquare \)