Local first integrals of three dimensional Lotka-Volterra system
Waleed Aziz, Colin Christopher
School of Computing and Mathematics, Plymouth University, UK

Introduction:
We investigate the local integrability and linearity of the Lotka-Volterra systems,
\[x' = x(1 - x^2 + yz), \quad y' = y(x - y + z), \quad z' = z(xy - x - y), \]
where \(y = 0 \).
By integrability, we mean the existence of a change of variables \(x = x(\Phi, \Psi, \Theta), y = y(\Phi, \Psi, \Theta), z = z(\Phi, \Psi, \Theta) \),
(1) to a system orbitally equivalent to its linear system
\[X = AX, \quad Y = BY, \quad Z = C \cdot Z, \]
where \(A \) is non-singular. The system (2) is linearizable.

Definition 1: We say that a non-constant analytic function \(\Phi(\cdot, \cdot, \cdot) \) of \(\Phi(\cdot, \cdot, \cdot) \) is a first integral of (1) if it is constant on all solutions of (1).

Definition 2: A polynomial \(P(x, y, z) \) of \(r \) variables is called an invariant algebraic surface of the system (1), if the polynomial \(P(x, y, z) \) satisfies the partial differential equation \(\frac{\partial P}{\partial x}(x' + y' + z') = 0 \) for some polynomial \(C(x, y, z) \). Such a polynomial is called the cofactor of the invariant algebraic surface \(\Phi(\cdot, \cdot, \cdot) \).

Definition 3: A function \(M(x, y, z) \) is an inverse Jacobi multiplier for the vector field \((\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z}) \) if it satisfies the equation
\[M' = M \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z} \right) = 0. \]

Theorem 1: Suppose the analytic vector field \(\Phi(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z)) \) has an analytic first integral \(\Psi(x, y, z) = 0 \), then the vector field \(\Phi(\cdot, \cdot, \cdot) \) has at least one of \(f, g, h \) and a Jacobi multiplier \(M(x, y, z) = \Psi^2(x, y, z) \), and the cross product of \((f, g, h)(L) \) is bounded away from zero for any integer \(L \cdot K \cdot L \), then the system has a second analytic first integral of the form \(\Psi^2(x, y, z) = 0 \), and hence the integrability of the system is guaranteed.

Case 1 (Darboux Method): If \(\Phi(\cdot, \cdot, \cdot) \) is an invariant algebraic surface \(f(x, y, z) = 0 \) with cofactor \(\Phi(x, y, z) \).
Two independent first integrals are \(\Psi_1 = \Psi^2(x, y, z) \) and \(\Psi_2 = \Psi^2(x, y, z) \).

Case 2 (Linearizable): In this case, we have the system
\[x' = x(1 - x^2 + yz), \quad y' = y(x - y + z), \quad z' = z(xy - x - y). \]
Writing \(Y = x + y + z \), we obtain \(Y' = Y \).
The resulting system is linearizable. Thus, there exist a change of coordinates \(x = q(x, y, z), y = q(x, y, z), z = q(x, y, z) \) such that \(X = x + y + z \).

Case 3 (Special Transformation to Linearizable): In this case, we have the system
\[x' = x(a + x + y + z), \quad y' = y(1 - a + y + z), \quad z' = z(a + x + y + z). \]
The transformation \(Y = x + a + y + z \) gives \(Y' = Y(1 + a + b + c) \).
This system again is localizable, and so there exists a change of coordinates \(x = q(x, y, z), y = q(x, y, z), z = q(x, y, z) \) such that \(X = x + y + z \).

Case 4 (Blow-down method): If the system (1) is linearizable, we can find a first integral \(\Phi(x, y, z) \) such that the transformation \(Y = \Phi(x, y, z) \) linearizes the system.

Case 5 (Darboux Method): If \(\Phi(x, y, z) \) is an invariant algebraic surface \(f(x, y, z) = 0 \) with cofactor \(\Phi(x, y, z) \).
Two independent first integrals are \(\Psi_1 = \Psi^2(x, y, z) \) and \(\Psi_2 = \Psi^2(x, y, z) \).

Case 6 (Blow-down method): If the system (1) is linearizable, we can find a first integral \(\Phi(x, y, z) \) such that the transformation \(Y = \Phi(x, y, z) \) linearizes the system.

Contact Information:
Corresponding authors:
waleed.aziz@plymouth.ac.uk
Mobile: 09409 770 845
waleed.aziz@plymouth.ac.uk
Tel: 01207 558 898

References: