
A Case Study on the Parametric Occurrence of
Multiple Steady States

H. Errami V. Gerdt D. Grigoriev M. Košta O. Radulescu
T. Sturm A. Weber

ACA, Kassel, 2016

Andreas Weber Parametric Multi-stationarity August, 2016 1 / 14



Introduction

Motivation

Bistability— or more generally multistationarity—has important
consequences on the capacity of signaling pathways to process
biological signals.
Algorithmically the task is to find the positive real solutions of a
parameterized system of polynomial or rational systems.

The dynamics of the network is given by polynomial
systems—arising from mass action kinetics—or rational
functions—arising in signaling networks when some some
intermediates of the reaction mechanisms are reduced.

Problem: High computation complexity of problem
[Grigoriev and Vorobjov, 1988] and dimensionality of typical
systems.
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Introduction

Motivation

Considerable work has been done to use specific properties of
networks and to investigate the potential of bistability (or more
general, multistationarity) of a biological network out of the
network structure.

Only to determine whether there exist certain rate constants such
that there are multiple steady states.
Instead of coming up with a semi-algebraic description of the range
of parameters yielding this property.

Considerable work using Feinberg’s chemical reaction network
theory (CRNT).
For clever ways to use CRNT and other graph theoretic methods
to determine in contrast the potential of multiple positive steady
states we refer to [Conradi et al., 2008,
Pérez Millán and Turjanski, 2015, Johnston, 2014] and to
[Joshi and Shiu, 2015] for a survey.
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Introduction

Motivation

However, given a bistable mechanism it is important to compute
the bistability domains in parameter space.

The parameter values for which there are more than one stable
steady states.
The size of bistability domains gives the spread of the hysteresis
and quantifies the robustness of the switches.

For this purpose the work of [Paris et al., 2005] is relevant: they
used symbolic computation tools to determine the number of
steady states and their stability of several systems—and they
reported results up to a 5-dimensional system using specified
parameter values.
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Introduction

Our Case Study

We use an 11-dimensional model of a mitogen-activated protein
kinases (MAPK) cascade [Markevich et al., 2004] as a case study.

To investigate properties of the system and
algorithmic methods towards the goal of semi-algebraic
descriptions of parameter regions for which multiple positive steady
states exist.

The model of the MAPK cascade we are investigating can be
found in the Biomodels database [Li et al., 2010] as number 26
and is given by the following set of differential equations.

We have renamed the species names into x1, . . . , x11 and the rate
constants into k1, . . . , k16 to facilitate reading:
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The MapK Network and the Arising System of Polynomials

ODE system of MAPK (BIOMOD026)

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12)− k4x2x4

ẋ3 = k6x7 + k8x8 − k7x3x5

ẋ4 = x6(k2 + k3) + x7(k5 + k6)− k1x1x4 − k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11 − x2x5(k11 + k12)

−k7x3x5 − k16x1x5

ẋ6 = k1x1x4 − x6(k2 + k3)

ẋ7 = k4x2x4 − x7(k5 + k6)

ẋ8 = k7x3x5 − x8(k8 + k9)

ẋ9 = k9x8 − k10x9 + k11x2x5

˙x10 = k12x2x5 − x10(k13 + k14)

˙x11 = k14x10 − k15x11 + k16x1x5
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The MapK Network and the Arising System of Polynomials

Conservation constraints

Using the left-null space of the stoichiometric matrix under positive
conditions as conservation constraint [Famili and Palsson, 2003] we
obtain the following three linear conservation constraints:

x5 − k17 + x8 + x9 + x10 + x11 = 0,
x4 − k18 + x6 + x7 = 0,

x1 − k19 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = 0,

where k17, k18, k19 are new constants computed from the initial data.
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The MapK Network and the Arising System of Polynomials

A first computational attempt

The polynomial system without the conservation laws can be
solved fully parametrically by Maple.

In less than 1 second of computation time.
Complex solutions can be expressed using three transcendental
bases.

But for multistationarity one has to determine whether there are
multiple positive real solutions obeying the conservation
constraints.
Substituting the solutions into the conservations constraints
yielded a three dimensional polynomial system

From which one variable could be eliminated rather easily.
A second variable could be eliminated using resultants.
But the obtained parametric polynomial withstood the attempt to
determine parametric multiple solutions.
Also using other symbolic techniques on the level of two remaining
polynomials turned out to be not simpler than directly working on
the original system.
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Computing complex solutions using homotopy solvers

Non-parametric computations
We estimate all parameters except k19 with values from Biomodels
database as follows:

k1 = 0.02, k4 = 0.032, k7 = 0.045, k9 = 0.092, k15 = 0.086,
k2 = 1, k3 = 0.01, k5 = 1, k6 = 15, k8 = 1,

k10 = 1, k11 = 0.01, k12 = 0.01, k14 = 0.5, k13 = 1,
k16 = 0.0011, k17 = 100, k18 = 50.

Using the homotopy solver Bertini [Bates et al., ] we obtained the
following results using for k19 different parameter values found in the
literature:

For the parameter values as above and k19 = 500 we obtained 6
solutions,

of which 3 were positive real solutions.
For k19 = 200, a single positive solutions was obtained.
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Determination of Parametric Multiple Steady States

Parametric computations

Our focus to analyze the system for multiple positive steady states
is on methods based on real quantifier elimination,

which can directly deal with the quest of multiple positive real
solutions even in the presence of parameters.
Although the method can handle arbitrary numbers of parameters
in principle, only up to one parameter will has been left free to come
up with feasible computations.
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Determination of Parametric Multiple Steady States

Parametric computations

Using a combination of Redlog
[Dolzmann and Sturm, 1997, Dolzmann et al., 2004] and Qepcad B
[Brown, 2003] we have obtained the following results (using the
estimates for the parameters except of k19 as above):

1 For all positive choices of k19—extending to infinity—there is at
least one positive solution for (x1, . . . , x11).

2 There is a breaking point β around k19 = 409.253 where the
system changes its qualitative behavior. We have exactly
computed β as a real algebraic number. For k19 < β there is
exactly one positive solution for (x1, . . . , x11). For k19 > β there
are at least 3 and at most 311 positive solutions for (x1, . . . , x11).

The overall computation time for this parametric analysis has been
less than 5 minutes.
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Determining the Stability of the Fixed Points

Determining the Stability of the Fixed Points

For the numeric approximations of the fixed points we numerically
computed the eigenvalues of the Jacobian using Maple.
For k19 = 200 the single positive fixed point could be shown to be
stable in this way.
For k19 = 500 one of the three positive fixed points could be
shown to be unstable whereas two could be shown to be stable.

Hence for k19 = 500 the system is indeed bistable.

A verification of the stability of the fixed points using the exact real
algebraic numbers and the Routh-Hurwitz criterion seems to be
out of range of current methods for this example.
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Conclusion and Future Work

Conclusion and Future Work

Although the goal of semi-algebraic description of the range of
several parameters yielding bistable behavior could not be
achieved for the 11-dimensional system, which was used for the
case study, our case study shows that one is not too far off.
As there are many very relevant systems having dimensions
between 10 and 20 it seems to be worth the effort to enhance the
algorithmic methods and to come up with improved
implementations of them to solve this very important applications
problem for symbolic computation.
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Conclusion and Future Work

Conclusion and Future Work

In addition to improving the real quantifier elimination methods,
which can deal with the question of positive real solutions in a
parametric way directly, using methods that deal with complex
solutions first (such as Gröbner bases or regular chain methods)
are a topic of future research.

A challenge for the latter methods are the parametric determination
of the positive real solutions out of the descriptions of the complex
solutions.
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