A Case Study on the Parametric Occurrence of Multiple Steady States

H. Errami V. Gerdt D. Grigoriev M. Košta O. Radulescu T. Sturm <u>A. Weber</u>

ACA, Kassel, 2016

Andreas Weber

Parametric Multi-stationarity

August, 2016 1 / 14

Motivation

- *Bistability* or more generally *multistationarity*—has important consequences on the capacity of *signaling pathways* to process biological signals.
- Algorithmically the task is to find the positive real solutions of a parameterized system of polynomial or rational systems.
 - The dynamics of the network is given by polynomial systems—arising from mass action kinetics—or rational functions—arising in signaling networks when some some intermediates of the reaction mechanisms are reduced.
- Problem: *High computation complexity* of problem [Grigoriev and Vorobjov, 1988] and *dimensionality of typical systems*.

Motivation

- Considerable work has been done to use specific properties of networks and to investigate the *potential of bistability* (or more general, multistationarity) of a biological network out of the *network structure*.
 - Only to determine whether there *exist certain rate constants* such that there are *multiple steady states*.
 - Instead of coming up with a *semi-algebraic description of the range of parameters* yielding this property.
- Considerable work using Feinberg's *chemical reaction network theory (CRNT)*.

For clever ways to use *CRNT* and other *graph theoretic* methods to determine in contrast the *potential of multiple positive steady states* we refer to [Conradi et al., 2008, Pérez Millán and Turjanski, 2015, Johnston, 2014] and to [Joshi and Shiu, 2015] for a survey.

< ロ > < 同 > < 回 > < 回 >

Motivation

- However, given a bistable mechanism it is important to compute the *bistability domains* in *parameter space*.
 - The parameter values for which there are more than one stable steady states.
 - The size of bistability domains gives the spread of the hysteresis and quantifies the robustness of the switches.
- For this purpose the work of [Paris et al., 2005] is relevant: they used symbolic computation tools to determine the *number of steady states* and their *stability* of several systems—and they reported results up to a *5-dimensional system* using specified parameter values.

Our Case Study

- We use an 11-dimensional model of a mitogen-activated protein kinases (MAPK) cascade [Markevich et al., 2004] as a case study.
 - To investigate properties of the system and
 - algorithmic methods towards the goal of *semi-algebraic* descriptions of parameter regions for which *multiple positive steady* states exist.
- The model of the MAPK cascade we are investigating can be found in the Biomodels database [Li et al., 2010] as number 26 and is given by the following set of differential equations.
 - We have renamed the species names into x_1, \ldots, x_{11} and the rate constants into k_1, \ldots, k_{16} to facilitate reading:

ODE system of MAPK (BIOMOD026)

$$\begin{aligned} \dot{x_1} &= k_2 x_6 + k_{15} x_{11} - k_1 x_1 x_4 - k_{16} x_1 x_5 \\ \dot{x_2} &= k_3 x_6 + k_5 x_7 + k_{10} x_9 + k_{13} x_{10} - x_2 x_5 (k_{11} + k_{12}) - k_4 x_2 x_4 \\ \dot{x_3} &= k_6 x_7 + k_8 x_8 - k_7 x_3 x_5 \\ \dot{x_4} &= x_6 (k_2 + k_3) + x_7 (k_5 + k_6) - k_1 x_1 x_4 - k_4 x_2 x_4 \\ \dot{x_5} &= k_8 x_8 + k_{10} x_9 + k_{13} x_{10} + k_{15} x_{11} - x_2 x_5 (k_{11} + k_{12}) \\ & -k_7 x_3 x_5 - k_{16} x_1 x_5 \\ \dot{x_6} &= k_1 x_1 x_4 - x_6 (k_2 + k_3) \\ \dot{x_7} &= k_4 x_2 x_4 - x_7 (k_5 + k_6) \\ \dot{x_8} &= k_7 x_3 x_5 - x_8 (k_8 + k_9) \\ \dot{x_9} &= k_9 x_8 - k_{10} x_9 + k_{11} x_2 x_5 \\ \dot{x_{10}} &= k_{12} x_2 x_5 - x_{10} (k_{13} + k_{14}) \\ \dot{x_{11}} &= k_{14} x_{10} - k_{15} x_{11} + k_{16} x_1 x_5 \end{aligned}$$

Andreas Weber

Conservation constraints

Using the left-null space of the stoichiometric matrix under positive conditions as conservation constraint [Famili and Palsson, 2003] we obtain the following *three linear conservation constraints*:

$$x_5 - k_{17} + x_8 + x_9 + x_{10} + x_{11} = 0$$

$$x_4 - k_{18} + x_6 + x_7 = 0,$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$x_1 - k_{19} + x_2 + x_3 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} = 0,$$

where k_{17} , k_{18} , k_{19} are new constants computed from the initial data.

A first computational attempt

- The polynomial system *without the conservation laws* can be *solved fully parametrically* by Maple.
 - In less than 1 second of computation time.
 - Complex solutions can be expressed using three transcendental bases.
- But for multistationarity one has to determine whether there are *multiple positive real solutions obeying the conservation constraints.*
- Substituting the solutions into the conservations constraints yielded a three dimensional polynomial system
 - From which one variable could be eliminated rather easily.
 - A second variable could be eliminated using resultants.
 - But the obtained parametric polynomial withstood the attempt to determine parametric multiple solutions.
 - Also using other symbolic techniques on the level of two remaining polynomials turned out to be *not simpler* than directly working on the *original system*.

Non-parametric computations

We estimate all parameters except k_{19} with values from Biomodels database as follows:

$k_1 = 0.02,$	$k_4 = 0.032,$	$k_7 = 0.045,$	<i>k</i> ₉ = 0.092,	$k_{15} = 0.086,$
$k_2 = 1$,	$k_{3} = 0.01,$	$k_5 = 1$,	$k_{6} = 15,$	$k_{8} = 1$,
$k_{10} = 1$,	$k_{11} = 0.01,$	$k_{12} = 0.01,$	$k_{14} = 0.5,$	$k_{13} = 1,$
$k_{16} = 0.0011$,	$k_{17} = 100,$	$k_{18} = 50.$		

Using the *homotopy solver Bertini* [Bates et al.,] we obtained the following results using for k_{19} different parameter values found in the literature:

- For the parameter values as above and $k_{19} = 500$ we obtained 6 solutions,
 - of which 3 were positive real solutions.
- For $k_{19} = 200$, a single positive solutions was obtained.

Parametric computations

- Our focus to analyze the system for multiple positive steady states is on methods based on *real quantifier elimination*,
 - which can *directly deal with the quest of multiple positive real* solutions even in the presence of parameters.
 - Although the method can handle arbitrary numbers of parameters in principle, only up to one parameter will has been left free to come up with feasible computations.

< ロ > < 同 > < 回 > < 回 >

Parametric computations

Using a combination of Redlog [Dolzmann and Sturm, 1997, Dolzmann et al., 2004] and Qepcad B [Brown, 2003] we have obtained the following results (using the estimates for the parameters except of k_{19} as above):

- For all positive choices of k₁₉—extending to infinity—there is at least one positive solution for (x₁,..., x₁₁).
- ⁽²⁾ There is a breaking point β around $k_{19} = 409.253$ where the system changes its qualitative behavior. We have exactly computed β as a real algebraic number. For $k_{19} < \beta$ there is exactly one positive solution for (x_1, \ldots, x_{11}) . For $k_{19} > \beta$ there are at least 3 and at most 3^{11} positive solutions for (x_1, \ldots, x_{11}) .

The overall computation time for this parametric analysis has been less than 5 minutes.

Determining the Stability of the Fixed Points

- For the numeric approximations of the fixed points we numerically computed the eigenvalues of the Jacobian using Maple.
- For k₁₉ = 200 the single positive fixed point could be shown to be stable in this way.
- For k₁₉ = 500 one of the three positive fixed points could be shown to be unstable whereas two could be shown to be stable.
 - Hence for $k_{19} = 500$ the system is indeed bistable.
- A verification of the stability of the fixed points using the exact real algebraic numbers and the Routh-Hurwitz criterion seems to be out of range of current methods for this example.

Conclusion and Future Work

- Although the goal of *semi-algebraic description* of the range of several parameters yielding bistable behavior could not be achieved for the *11-dimensional system*, which was used for the case study, our case study shows that *one is not too far off*.
- As there are *many very relevant systems* having *dimensions between 10 and 20* it seems to be worth the effort to *enhance the algorithmic methods* and to come up with improved implementations of them to solve this very important applications problem for symbolic computation.

Conclusion and Future Work

- In addition to improving the *real quantifier elimination methods*, which can deal with the question of *positive real solutions in a parametric way directly*, using methods that *deal with complex solutions first* (such as *Gröbner bases* or *regular chain methods*) are a topic of future research.
 - A challenge for the latter methods are the parametric determination of the positive real solutions out of the descriptions of the complex solutions.

Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W.

Bertini: Software for numerical algebraic geometry. Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.

Brown, C. W. (2003).

QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin, 37(4):97–108.

Conradi, C., Flockerzi, D., and Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211(1):105–31.

Dolzmann, A., Seidl, A., and Sturm, T. (2004). Efficient projection orders for CAD.

3

イロト 不得 トイヨト イヨト

In Gutierrez, J., editor, *Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation (ISSAC 2004)*, pages 111–118. ACM Press, New York, NY.

Dolzmann, A. and Sturm, T. (1997).

Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9.

Famili, I. and Palsson, B. Ø. (2003).

The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. *Biophys. J.*, 85(1):16–26.

- Grigoriev, D. and Vorobjov, N. N. (1988).
 Solving systems of polynomial inequalities in subexponential time. *Journal of Symbolic Computation*, 5(1-2):37–64.
- Johnston, M. (2014).

A note on" MAPK networks and their capacity for multistationarity due to toric steady states".

Andreas Weber

Parametric Multi-stationarity

August, 2016 14 / 14

arXiv Prepr. arXiv1407.5651, pages 1–13.

Joshi, B. and Shiu, A. (2015).

A Survey of Methods for Deciding Whether a Reaction Network is Multistationary.

Math. Model. Nat. Phenom., 10(5):47-67.

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M. I., Snoep, J. L., Hucka, M., Le Novère, N., and Laibe, C. (2010). BioModels database: An enhanced, curated and annotated resource for published guantitative kinetic models. BMC Systems Biology, 4:92.

Markevich, N. I., Hoek, J. B., and Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3):353–359.

Stability analysis of biological systems with real solution classification.

In *ISSAC '05 Proc. 2005 Int. Symp. Symb. Algebr. Comput.*, pages 354–361, Beijing, China. ACM.

Pérez Millán, M. and Turjanski, A. G. (2015). MAPK's networks and their capacity for multistationarity due to toric steady states.

Math. Biosci., 262:125-37.