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The center-focus problem

How to distinguish if a monodromic point
is a repellor, a center, or an attractor?
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The center-focus problem for nondegenerate singular points

For differential systems ,X = (P,Q), an elementary singular point is of
center-focus type if trDX (x0) = 0 and detDX (x0) > 0. Then, after a
change of variables and time, the system writes as:

ẋ = −y +
∑

k+`=m

pk,`x
ky `,

ẏ = x +
∑

k+`=m

qk,`x
ky `,

and, in complex coordinates (z = x + iy and z ′ = x ′ + iy ′),

z ′ = i z +
∑

k+`=m

rk,` zk z̄`,

with m ≥ 2.
Here pk,`, qk,` (resp. rk,`) are real (resp. complex) parameters.
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The Lyapunov constants

Definition

If VK 6= 0 and
Π(ρ)− ρ = VKρ

K + O(ρK+1)

for ρ > 0 close to zero, then VK is called the K -th Lyapunov constant.

V2K = 0, consequently the first nonvanishing coefficient of the
displacement map corresponds to an odd exponent of ρ.

We will use indistinctly V2K+1 or LK .
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The related problems via Lyapunov constants

Problems

Π(ρ) ≡ ρ? Π(ρ) > ρ? Π(ρ) < ρ?

V2k+1 gets the stability of the origin.

The characterization of centers is equivalent to solve the system
{V3 = 0,V5 = 0, . . . ,V2K+1 = 0, . . .}.
Maximum order of a weak focus: Highest K in a fixed (perturbation)
family such that V2K+1 6= 0?

A limit cycle is a isolated solution of Π(ρ) = ρ.

Local cyclicity: Number of limit cycles bifurcating from ρ = 0.
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In polar coordinates: The Andronov’s method

{
ẋ = −y + X2(x , y) + X3(x , y) + X4(x , y) + · · · ,
ẏ = x + Y2(x , y) + Y3(x , y) + Y4(x , y) + · · · ,

where Xj(x , y) and Yj(x , y) are homogeneous polynomials of degree j
depending on the original parameters pk,` and qk,`.
In polar coordinates, x = r cos θ, y = r sin θ, we can write the above
system as

dr

dt
= r 2 P2(θ) + r 3 P3(θ) + · · · ,

dθ

dt
= 1 + r Q2(θ) + r 2 Q3(θ) + · · · ,

where

Pj(θ) = cos θXj(cos θ, sin θ) + sin θYj(cos θ, sin θ),

Qj(θ) = cos θYj(cos θ, sin θ)− sin θXj(cos θ, sin θ),

homogeneous trigonometric polynomials of degree j + 1.
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The Andronov’s method

Let r(θ, ρ) be the solution of the initial value problem

r ′ =
dr

dθ
=R2(θ) r 2 + R3(θ) r 3 + · · · ,

r(0, ρ) =ρ,

that, in series in ρ, writes as

r(θ, ρ) = ρ+ u2(θ) ρ2 + u3(θ) ρ3 + · · · .

From r(0, ρ) = ρ, it is clear that uk(0) = 0 for all k .

Consequently, the return map can be computed evaluating r(θ, ρ) at
θ = 2π.
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The Andronov’s method

u2(2π) = R̃2(2π) =

∫ 2π

0
R2(ψ) dψ =

∫ 2π

0
P2(ψ) dψ = 0,

because P2(θ) is a homogeneous polynomial of degree 3 in sin θ and cos θ.

u3(2π) =
(

R̃2(2π)
)2

+ R̃3(2π) =

∫ 2π

0
R3(ψ) dψ.

In this case
(

R̃2(2π)
)2

= 0.

Finally

V3 =

∫ 2π

0
(P3(ψ)− P2(ψ) Q2(ψ)) dψ.

In general, as P3 has degree 4 and P2Q2 has degree 6, the above integral
is non zero.
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In Cartesian coordinates: The Poincaré–Lyapunov Method

The differential equation, in complex coordinates writes, as

z ′ = iz + Z (z , z̄) = iz + Z2(z , z̄) + Z3(z , z̄) + · · · .

The keypoint of this method is the study of the existence of a “Lyapunov
function” of the form

F = F2 + F3 + F4 + · · · ,

where Fk are homogeneous polynomials of degree k , starting with terms of
degree two because the linear term corresponds to z ′ = iz .
If Ḟ is nonzero then we will have a “Lyapunov function” in a neighborhood
of the origin.

Ḟ = Fz ż+Fz̄ ˙̄z = Fz (iz+Z (z , z̄))+Fz̄ (−i z̄+Z (z , z̄)) =
∑
k≥1

V2k+1 (zz̄)k+1.

Note that x2 + y 2 = zz̄ . We have used the same name for the Lyapunov
constants than in the previous method. But they are not exactly the same.
They coincide modulus a multiplicative constant.
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The Poincaré–Lyapunov Method

When all Vk are zero, Ḟ = 0, then F is a first integral and the origin is a
center.
Otherwise, when some (the first) V2k+1 is different from zero the origin
will be stable (V2k+1 < 0) or unstable (V2k+1 > 0).
In this case (z ′ = iz + · · · ) when the system has a center, the first integral
converges in a neighborhood of the origin.

The terms Fk can be found recursively.

(F2z + F3z + F4z + · · · ) (iz + Z2 + Z3 + Z4 + · · · )+

+ (F2z̄ + F3z̄ + F4z̄ + · · · ) (−i z̄ + Z2 + Z3 + Z4 + · · · ) =

= V3 (zz̄)2 + V5 (zz̄)3 + V7 (zz̄)4 + · · · .
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The Poincaré–Lyapunov Method

When p is odd, V p
2
−1 = 0, and the system writes:



−p 0 0 . . . 0 0 . . . 0
0 −p + 2 0 0
...

. . .
. . .

. . .
...

0 0 −1 0 0
0 0 1 0 0
...

. . .
. . .

. . .
...

0 0 p − 2 0
0 . . . 0 0 . . . 0 0 p





hp,0

hp−1,1
...

h p+1
2
, p−1

2

h p−1
2
, p+1

2
...

h1,p−1

h0,p


=



φ̃0

φ̃1
...

φ̃ p−1
2

φ̃ p+1
2

...

φ̃p−1

φ̃p


,

where the components φ̃j are the coefficients of −i
∑p−1

k=2 φp−k+1,k and all
are known in this step p. The system is well defined because the

determinant is non zero. Then hp−j ,j is uniquely determined hp−j ,j =
φ̃j

2j−p .
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The Poincaré–Lyapunov Method

When p is even, then

−p 0 0 . . . 0 0 0 . . . 0
0 −p + 2 0 0
...

. . .
. . .

. . .
...

0 0 −2 0 0
0 0 0 0 0
0 0 2 0 0
...

. . .
. . .

. . .
...

0 0 p − 2 0
0 . . . 0 0 0 . . . 0 0 p





hp,0

hp−1,1
...

h p
2

+1, p
2
−1

h p
2
, p

2

h p
2
−1, p

2
+1

...
h1,p−1

h0,p


=



φ̃0

φ̃1
...

φ̃ p
2
−1

φ̃ p
2

+ i Vp−1

φ̃ p
2

+1
...

φ̃p−1

φ̃p


,

where the components φ̃j are the coefficients of −i
∑p−1

k=2 φp−k+1,k in the
equation of degree p, that are known. As in the odd case, the coefficients
hp−j ,j for j 6= p

2 can be determined.
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The Lyapunov constants using “words”

Let R ∈ P be a polynomial of degree n. For all integer number k ≥ 2, we
define the operators Fk and Hk as
G : P1 −→ P1

R =
∑
k 6=`

rk`z
k z̄` 7−→

∑
k 6=`

2
k−` rk`z

k z̄`,

F : P2 −→ P1

R 7−→ − Im
(
G
(
∂R(z,z̄)
∂z

))
,

Fk : P −→ P
R 7−→ F(RkR),

Hk : P −→ R

R 7−→ − 1

(2ρ)
n+1+k

2

∫
H=ρ

Im (RkRdz̄),

P0 is the subset formed by the polynomials vanishing at zero; P1 ⊂ P0 is
the subset of all polynomials without monomials of the form zk z̄k ;
P2 ⊂ P0 is the subset of all polynomials without monomials of the form
zk+1z̄k .
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The Lyapunov constants using “words”

The first Lyapunov constants expressed as words are:

V3 = H3(1) +H2(F2(1)),

V5 = H5(1)

+H4(F2(1)) +H3(F3(1)) +H2(F4(1))

+H3(F2(F2(1))) +H2(F3(F2(1))) +H2(F2(F3(1)))

+H2(F2(F2(F2(1)))).

Notice that the expression of F2 obtained in the computation of V3 is used
in several places to compute V5.
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Homogeneous nonlinearities using “words”

Then “nonvanishing” Lyapunov constants are

n = 2, 4, 6, . . ..

L1 =Hn(Fn(1)),

L2 =Hn(Fn(Fn(Fn(1)))),

L3 =Hn(Fn(Fn(Fn(Fn(Fn(1)))))),

L4 =Hn(Fn(Fn(Fn(Fn(Fn(Fn(Fn(1)))))))).

n = 3, 5, 7, . . ..

L1 =Hn(1),

L2 =Hn(Fn(1)),

L3 =Hn(Fn(Fn(1))),

L4 =Hn(Fn(Fn(Fn(1)))).
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The first two Lyapunov constants

We can clarify the meaning of the above properties with the explicit
expressions of the first two Lyapunov constants in the variables rk,` :

V3 =2π (Re(r2,1) + Im(−r2,0r1,1)) ,

V5 =
2

3
π(Re(V5,1) + Im(V5,2) + Re(V5,3) + Im(V5,4)),

where

V5,1 =3r32,

V5,2 =− 4r02r40 − 6r31r11 − 3r30r12 − r02r 13 − 3r 22r11 − 3r31r 20,

V5,3 =− 6r30r 2
11 − 3r30r11r 20 − 2r30r02r20 + 5r30r02r 11

+ 3r12r20r 11 + 2r12r 02r 20 + 3r12r 02r11 − 30r21r 20r20

− 24r21r20r11 − 21r21r 20r 11 − 15r21r 11r11 + r03r 02r 11 + 2r03r 02r20,

V5,4 =24r 2
11r 2

20 − 2r 02r 3
11 + 30r 20r11r 2

20 + 15r 2
11r 11r20 + 3r02r 2

11r20

− 2r 11r02r 2
20 − 4r11r 02r02r20.
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Order of a weak focus

Order of a weak focus

The order of a weak focus is the smallest value of K such that

Π(ρ)− ρ = V2K+1ρ
2K+1 + O(ρ2K+2).

Maximum order problem

For a given family of polynomial vector fields, which is the highest value
for the order of a weak focus?
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Known higher order weak foci

General n

n2 − 1 for n even [QiuYan2010,LliRab2012]

(n2 − 1)/2 for n odd [QiuYan2010,LliRab2012]

Concrete n

3 for n = 2 [Bau1952]

11 for n = 3 [Zol1995,Chr2006]

21 for n = 4 [Gin2012]

33 for n = 5 [Gin2012]

n2 + n − 2 for n = 6, 8, . . . , 18, 20, . . . , 32 [QiuYan2010,LiaTor2015]

The systems providing the best lower bound for the order of a weak-focus
are nonexplicit. They are “perturbing” results from centers.
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For even “low” degrees

We extend the work of QiuYan2010 up to degree 32, using the “words”
algorithm for homogeneous nonlinearities.

Proposition (LiaTor2015)

For n (even) ∈ {20, 22, . . . , 32} consider the system of degree n

z ′ = i z − n

n − 2
zn + zz̄n−1 + iCn z̄n.

Then there exists a number Cn such that the above system has a weak
focus at the origin of order n2 + n − 2.
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Highest order weak foci for odd degree

Theorem (LiaTor2015)

For n ≤ 100, the origin of equation

z ′ = i z + z̄n−1 + zn

is a weak focus of order (n − 1)2.
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Highest order weak foci for odd degree

Theorem (LiaTor2015)

For n ≤ 100, the origin of equation

z ′ = i z + z̄n−1 + zn

is a weak focus of order (n − 1)2.

1 With the classical algorithm solving linear equations recursively we
can comput, only, up to n = 12.

2 We can adapt de algorithm to prove up to n = 100. The necessary
memory to prove the case n = 100 is around 384Gb or RAM.
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The adapted algorithm (with GP-Pari)

firstliapunov(N)=

{

local(last,H,L);

last=2*(N-1)^2+2; H=matrix(last+1,last+1); L=vector(last+1);

H[N+1,1]=1; H[1,N+1]=1; H[N+1,2]=1; H[2,N+1]=1;

for(i=3,last,

for(j=0,floor((i+1)/2),

if (j-N+1>=0,

H[i-j+1,j+1]=H[i-j+1,j+1]+H[i-j+1+1,j-N+1+1]*(i-j+1)/(i-2*j+N)/I+H[i-j+1,j+1-N+1]*(j+1-N)/(i-2*j+N-1)/I;

);

if(i-j-N+1>=0,

if(i-2*j-N !=0,

H[i-j+1,j+1]=H[i-j+1,j+1]+H[i-j-N+1+1,j+1+1]*(j+1)/(i-2*j-N)/I;

);

if(i-2*j-N+1 !=0,

H[i-j+1,j+1]=H[i-j+1,j+1]+H[i-j-N+1+1,j+1]*(i-j-N+1)/(i-2*j-N+1)/I;

);

);

if(i-2*j==0,

L[j+1]=H[i-j+1,j+1];

if(L[j+1]!=0,

print("N=",N,", j=",j); print(L[j+1]);

);

);

);

for(j=floor((i+1)/2)+1,i,H[i-j+1,j+1]=conj(H[j+1,i-j+1]););

);

}
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Order of a weak focus and its cyclicity

Cyclicity of a weak-focus

For a given family of polynomial vector fields, which is the maximum
number of limit cycles that bifurcate from an elementary weak focus?

Problem

Fixed the degree or the family, does the number of limit cycles coincide
with the order of the weak focus?

Theorem

For a general system, the number of limit cycles that bifurcate from a
weak focus of order K (V2K+1 6= 0) is K .
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Simple systems with weak-foci of high order (n2 + n − 2)

Proposition

The system of degree 4

z ′ = i z − 2 z4 + zz̄3 + i

√
52278

20723
z̄4

has a weak-focus at the origin of order 18. Moreover there exist
polynomial perturbations of degree 4 such that from the origin bifurcate
18 limit cycles.

Proof.

The linear parts of the first 17 Lyapunov constants, with the restriction
trace=0, are linearly independent. Consequently there are 17 limit cycles
emerging from the origin with the assumption trace=0. The proof follows
adding the trace and bifurcating the last one.

Joan Torregrosa (UAB) Limit cycles in planar polynomial systems Kassel 24 / 34



Simple systems with weak-foci of high order (n2 + n − 2)

Proposition

The system of degree 6

z ′ = i z − 3

2
z6 + zz̄5 + i

√
963010778697180

958721342366881
z̄6

has a weak-focus at the origin of order 40. Moreover there exist
polynomial perturbations of degree 4 such that from the origin bifurcate
39 limit cycles.

Proof.

The linear parts of the first 37 Lyapunov constants, with the restriction
trace=0, are linearly independent. Consequently there are 37 limit cycles
emerging from the origin with the assumption trace=0. With the terms of
degree two and the trace we can add 2 extra limit cycles.
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Simple systems with weak-foci of high order (n2 + n − 2)

n order cyclicity up to order 1

4 18 18

6 40 37

8 70 63

Which are the number of limit cycles using higher order terms?
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The cyclicity of holomorphic centers

Theorem

The cyclicity of the holomorphic center

ż = iz + z2 + z3 + · · ·+ zn−1 + zn

is n2 + n− 2 for 4 ≤ n ≤ 13 and at least 9 and no more than 10 for n = 3,
under general polynomial perturbations of degree n.

The proof follows computing the first Lyapunov quantities up to order one
in the perturbed parameters.
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Linear term of Lyapunov constants: Parallelization

Theorem (LiaTor2015)

Let p(z , z̄) be a polynomial starting with terms of degree 2. Let
Qi (z , z̄ , λ) be analytic functions such that Qi (0, 0, λ) ≡ 0 and
Qi (z , z̄ , 0) ≡ 0, for i = 1, . . . , s. Let a1, . . . , as be any s fixed constants.
Suppose that V Qi

k are the k-Lyapunov constants of equations

ż = iz + p(z , z̄) + Qi (z , z̄ , λ), λ ∈ Cm, for i = 1, . . . , s.

Then the linear part of a1V Q1
k + · · ·+ asV Qs

k is the linear part of the
k-Lyapunov constant of equation

ż = iz + p(z , z̄) + a1Q1(z , z̄ , λ) + · · ·+ asQs(z , z̄ , λ),

with respect to the parameters λ.
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Computing in parallel for holomorphic center with order 1

Computation time for the perturbation of the holomorphic family:

n 4 5 6 7 8 9 10 11 12 13

1.7m 12.2m 1.2h 5.8h 1.4d 4.9d 1.8w 1.1M 3.3M 1y
P64 7s 0.5m 2m 8m 1.1h 3.1h 6.3h 0.9d 2.5d 8d
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Computing in parallel allow us to get new results for M(n)

Best lower bounds for M(n)

The number of small amplitude limit cycles bifurcating from an elementary
center or an elementary focus in the class of polynomial vector fields of
degree n is

M(n) ≥ n2 + 3n − 7 for n = 2, 3, 4.
[Bau1952,Zol1995,Chr2006,BouSad2008,Gin2012]

M(n) ≥ n2 + n − 2 for n = 5, 6, . . . , 13.
[LiaTor2015]
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