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Definitions

Consider a real planar polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q ∈ R[x, y] and the origin O = (0, 0) is a singularity.

System (1) has degree n if n = max{degP, degQ}.

System (1) is coprime if the polynomials P (x, y) and Q(x, y) have only
constant common factors in the ring R[x, y].

System (1) is called a homogeneous polynomial differential system (HS for
short) if for an arbitrary γ ∈ R+ it holds

P (γx, γy) = γnP (x, y) and Q(γx, γy) = γnQ(x, y).
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System (1) is called a quasi–homogeneous polynomial differential system
(QHS for short) if there exist constants s1, s2, d ∈ N such that for an
arbitrary γ ∈ R+ it holds

P (γs1x, γs2y) = γs1+d−1P (x, y) and Q(γs1x, γs2y) = γs2+d−1Q(x, y).

(s1, s2) — weight exponents
d — weight degree with respect to the weight exponents
w = (s1, s2, d) — weight vector

w̃ = (s̃1, s̃2, d̃) is a minimal weight vector if any other weight vector
(s1, s2, d) of system (1) satisfies s̃1 ≤ s1, s̃2 ≤ s2 and d̃ ≤ d.

When s1 = s2 = 1, system (1) is a homogeneous one of degree d.
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Advances on QHS

Integrability point of view:
[Edneral & Romanovski, preprint, 2016]
[Giné, Grau & Llibre, Discrete Contin. Dyn. Syst., 2013]
[Algaba, Gamero & Garćıa C., Nonlinearity, 2009]
[Goriely, J. Math. Phys., 1996]

Liouvillian integrable:
[Garćıa, Llibre & Pérez del Ŕıo, J. Diff. Eqns., 2013]
[Li, Llibre, Yang & Zhang, J. Dyn. Diff. Eqns., 2009]

Polynomial and rational integrability:
[Algaba, Garćıa & Reyes, Nonlinear Anal., 2010]
[Cairó & Llibre, J. Math. Anal. Appl., 2007]
[Llibre & Zhang, Nonlinearity, 2002]

Center and limit cycle problems:
[Algaba, Fuentes & Garćıa, Nonlinear Anal. Real World Appl., 2012]
[Gavrilov, Giné & Grau, J. Diff. Eqns., 2009]
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Center classification problem

Classification of polynomial systems formed by linear plus
homogeneous nonlinearities

Cubic polynomial systems
[Malkin, Volz. Mat. Sb. Vyp, 1964]
[Vulpe & Sibirskii, Soviet Math. Dokl., 1989]

Quartic or quintic polynomial systems
[Chavarriga & Gine, Publ. Mat., 1996, 1997] obtained some partial
results. For the systems of degree k > 3 the centers are not classified
completely.
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Classification of HS

Quadratic HS [Sibirskii & Vulpe, Differential Equations, 1977];
[Newton, SIAM Review, 1978]; [Date, J. Diff. Eqns., 1979];
[Vdovina, Diff. Uravn., 1984]; [Ye, Theory of Limit Cycles, 1986]

Cubic HS
[Cima & Llibre, J. Math. Anal. Appl., 1990]
[Ye, Qualitative Theory of Polynomial Differential Systems, 1995]

HS of arbitrary degree
[Cima & Llibre, J. Math. Anal. Appl., 1990]
[Llibre, Pérez del Ŕıo & Rodŕıguez, J. Diff. Eqns., 1996]

These papers have either characterized the phase portraits of HS of
degrees 2 and 3, or obtained the algebraic classification of that.
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Classifications of QHS with degree ≤ 4

Cubic QHS

[Garćıa, Llibre & Pérez del Ŕıo, J. Diff. Eqns., 2013]
provided an algorithm for obtaining all QHS with a given degree and
characterized QHS of degrees 2 and 3 having a polynomial, rational or
global analytical first integral.

[ Aziz, Llibre & Pantazi, Adv. Math., 2014]
characterized the centers of the QHS of degree 3. By the averaging theory,
at most one limit cycle can bifurcate from the periodic orbits of a center of
a cubic HS.

Quartic QHS

[Liang, Huang & Zhao, Nonlinear Dyn., 2014]
proved the non-existence of centers for the QHS of degree 4 and
completed classification of global phase portraits.
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Forms of quintic QHS

Theorem

[Tang, Wang & Zhang, DCDS, 2015] Every planar real quintic quasi
–homogeneous but non–homogeneous coprime polynomial differential
system (1) can be written as one of the following 15 systems.

X011 : ẋ = a05y
5 + a13xy

3 + a21x
2y, ẏ = b04y

4 + b12xy
2 + b20x

2,

with a05b20 6= 0 and the weight vector w̃ = (2, 1, 4),

X012 : ẋ = a05y
5 + a22x

2y2, ẏ = b13xy
3 + b30x

3,

with a05b30 6= 0 and the weight vector w̃ = (3, 2, 8),

X014 : ẋ = a05y
5 + a40x

4, ẏ = b31x
3y,

with a05a40b31 6= 0 and the weight vector w̃ = (5, 4, 16),

...

X1 : ẋ = a05y
5 + a10x, ẏ = b01y,

with a05a10b01 6= 0, and the weight vector w̃ = (5, 1, 1).
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Proof

[ Garćıa, Llibre & Pérez del Ŕıo, J. Diff. Eqns., 2013]
The quasi–homogeneous but non–homogeneous polynomial differential
system of degree n with the weight vector (s1, s2, d) can be written in

Xptk = Xp
n +Xptk

n−t +
∑

s ∈ {1, . . . , n− p} \ {t}
kst = ks and

ks ∈ {1, . . . , n− s− p+ 1}

Xpsks
n−s ,

where p ∈ {0, 1, ..., n− 1}, t ∈ {1, 2, ..., n− p}, k ∈ {1, . . . , n− p− t+1},

Xp
n = (ap,n−px

pyn−p, bp−1,n−p+1x
p−1yn−p+1).

and

Xptk
n−t = (ap+k,n−t−p−kx

p+kyn−t−p−k, bp+k−1,n−t−p−k+1x
p+k−1yn−t−p−k+1).
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Center classification of quintic QHS

Theorem

[Tang, Wang & Zhang, DCDS, 2015] The quintic quasi–homogeneous but
non–homogeneous coprime polynomial differential system (1) having a
center at the origin, together with possible invertible changes of variables,
must be of the form

ẋ = axy2 − y5, ẏ = by3 + x, (2)

with a = −3b and b2 < 1
3 . Furthermore, the center is not isochronous and

the period of the periodic orbits is a monotonic function.
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Proof

Deleting some vector fields having invariant lines by simple anaysis, there
remain three vector fields X011, X015 and X021 to be studied.

X015 is a Hamiltonian system and its origin is a degenerate singularity.

Lemma

The origin O of the Hamiltonian system

X015 : ẋ = a05y
5, ẏ = b40x

4, with a05b40 6= 0

consists of two hyperbolic sectors.

Y.-L. Tang (CAMTP) Global Dynamics of Quasi–homogeneous Systems 12 / 33



Apply the Bendixson’s formula that

I(O) = 1 +
ê− ĥ
2

.

I(O) — Poincaré index of the singularity O
ê — number of elliptic sectors
ĥ — number of hyperbolic sectors adjacent to the singularity O

By [Zhang, Ding, Huang and Dong, Qualitative Theory of Differential
Equations, 1992], I(O) = 0 because the sum of degrees of two
components of the vector field X015 is odd. Since ê = 0, it follows that
ĥ = 2.
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This lemma shows that the origin of the vector field X015 is not a center.

Actually, if we only want to prove that the origin of the vector field X015 is
not a center, the proof can be simplified.

It follows from the second equation y′(t) = b40x
4 of X015 that y(t) is

increasing if b40 > 0 and decreasing if b40 < 0 for t ∈ (−∞,+∞).
Therefore, y(t) is not a periodic function, which yields that X015 has no
periodic orbits. It is obvious that the origin is not center if b40 = 0.
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Lemma

For systems

X±021 : ẋ = axy2 ± y5, ẏ = x+ by3,

the following statements hold.

(a) The origin O of system X+
021 is not a center.

(b) System X−021 has a center at the origin O if and only if
a = −3b, b2 < 1

3 .
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∂P±
∂x

+
∂Q±
∂y

= (a+ 3b)y2.

By Bendixson’s Criteria, system X±021 has no periodic orbit if a+ 3b 6= 0.

Apply the theory of nilpotent center in [Dumortier, Llibre and Artés,
Qualitative Theory of Planar Differential Systems, 2006], we have

(a) O of system X+
021 is not a center provided a = −3b.

(b) O of system X−021 is monodromy iff −1 + 3b2 < 0 in the case a = −3b.
The polynomial first integral H+(x, y) = x2

2 + bxy3 + y6

6 forces that the
origin O must be a center.
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Lemma

System

X011 : ẋ = a05y
5 + a13xy

3 + a21x
2y, ẏ = b04y

4 + b12xy
2 + b20x

2

has an invariant curve passing through the origin O, where a05b20 6= 0.

We can check thay X011 has the invariant curve x− λ1y2 = 0, where λ1 is
a real zero of the cubic polynomial

η(1, λ) = a05 + (a13 − 2b04)λ+ (a21 − 2b12)λ
2 − 2b20λ

3.

This lemma shows that the origin of the vector field X011 is not a center.
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X021: Center at the origin

X011: No centers

X015: No centers
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Center of X021 is NOT isochronous, since the center is not elementary by
[Mardesic, Rousseau & Toni, J. Diff. Eqns.,1995].

The period function

T (h) =
1

3
√
2

(
6

1− 3b2

) 1
6

h−
2
3

∫ 2π

0
(sin s)−

2
3ds.

Clearly the period of closed orbits inside the period annulus of the center is
monotonic in h. We completed the proof of this theorem.
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Global center of X021

Theorem

[Tang, Wang & Zhang, DCDS, 2015] The center of system X021 is global
if it exists.

Figure: Global phase portrait of system X021.
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Proof

First integral is NOT enough to get the global phase portrait. We need to
know the properties of orbits at infinity.

Poincaré compactification → Poincaré sphere:

u̇ = u6 + (b− a)u3z2 + z4 := P1(u, z),
ż = u2z(u3 − az2) := Q1(u, z).

E = (0, 0)↔∞ on the x-axis, which is the unique singularity at infinity of
X021.
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We can prove E = (0, 0) is NOT monodromy by the method of
generalized normal sectors [Tang & Zhang, Nonlinearity, 2004].

Figure: Directions of vector field for system X021.
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Global structures of quintic QHS

Among all quintic QHS for the global structures, the most difficult case is
to discuss that of

X111 : ẋ = a14xy
4 + a22x

2y2 + a30x
3, ẏ = b05y

5 + b13xy
3 + b21x

2y,

where a214 + b205 6= 0. We will mainly introduce the results of X111.

Theorem

[Tang& Zhang, preprint, 2016] The global phase portrait of system X111 is
topologically equivalent to one of 52 ones without taking into account the
direction of the time.
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Proof.

Step 1. Simplification of quintic QHS

The quintic quasi–homogeneous system X111 can be transformed into
homogeneous system of degree 3

H :

{
ẋ = x(c12y

2 + c21xy + c30x
2) := P3(x, y),

ẏ = y(y2 + d12xy + d21x
2) := Q3(x, y),

by using the change
x̃ = x, ỹ = y2,

together with a time scaling, where c30 6= 0 and we keep the notations of
parameters cij , dij and variables x, y for simplicity..
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Then, for studying topological phase portraits of X111, we need the
knowledge on homogeneous systems of degree 3.
Based on the classification of fourth–order binary forms,
[Cima & Llibre, J. Math. Anal. Appl., 1990]
obtained the algebraic characteristics of cubic HS and further they
researched all phase portraits of such canonical cubic HS.

However, it is NOT easy to change a cubic homogeneous system to its
canonical form since one needs to solve four quartic polynomial equations.

We will apply the idea in [Cima & Llibre, 1990] to obtain the global
dynamics of system H and consequently those of X111.
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Step 2. Blow-up along a line

For vector field H of degree 3, its origin is a highly degenerate singularity.
For studying its local dynamics around the origin, the blow–up technique is
useful. Commonly, we can blow up a degenerate singularity into several
less degenerate singularities either on a cycle or on a line. Here, we choose
the latter, which can be applied to the singularities both in the finite plane
and at the infinity.
The change of variables

x = x, y = ux,

transforms system H into

Ĥ :

{
ẋ = xP̂3(u) := x(c12u

2 + c21u+ c30),

u̇ = Ĝ3(u) := u((1− c12)u2 + (d12 − c21)u+ d21 − c30).
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The singularity E0 = (0, u0) of system Ĥ is a saddle if either
P̂3(u0)Ĝ

′
3(u0) < 0, or Ĝ′3(u0) = Ĝ′′3(u0) = 0 and P̂3(u0)Ĝ

′′′
3 (u0) < 0.

E0 is a node if either P̂3(u0)Ĝ
′
3(u0) > 0, or Ĝ′3(u0) = Ĝ′′3(u0) = 0 and

P̂3(u0)Ĝ
′′′
3 (u0) > 0.

These show that except the invariant line y = u0x system H has either no
orbits or infinitely many orbits connecting with the origin along the
characteristic directions θ = arctan(u0).

If Ĝ′3(u0) = 0 and Ĝ′′3(u0) 6= 0, the singularity E0 = (0, u0) is a
saddle–node. More precisely, there exist infinitely many orbits of system H
connecting the origin along the direction of the invariant line y = u0x if u0
is a zero of multiplicity 2 of Ĝ3(u).
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Step 3. Generalized normal sectors along the direction θ = π
2

We should consider the properties of H at the origin along the
characteristic direction θ = π

2 separately.

Assume that θ = π
2 is a zero of multiplicity m of

G̃(θ) := xQ3(cos θ, sin θ)− yP3(cos θ, sin θ). The following statements
hold.

If m > 0 is even, there exist infinitely many orbits connecting the
origin of H and being tangent to the y–axis at the origin.

If m is odd, there exist either infinitely many orbits if
G̃(m)(π2 )H̃(π2 ) > 0, or exactly one orbit if G̃(m)(π2 )H̃(π2 ) < 0,
connecting the origin of H and being tangent to the y–axis at the
origin.
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Step 4. Poincaré compactification

Taking respectively the Poincaré transformations x = 1/z, y = u/z and
x = v/z, y = 1/z system H around the equator of the Poincaré sphere
can be written respectively in

u̇ = G3(1, u), ż = −zP3(1, u),

and

v̇ = −G3(v, 1), ż = −zQ3(v, 1).

A singularity Iu0 of system H located at the infinity of the line y = xu0 is
– a saddle if P̂3(u0)Ĝ

′
3(u0) > 0, or Ĝ′3(u0) = Ĝ′′3(u0) = 0 and

P̂3(u0)Ĝ
(3)
3 (u0) > 0

– a node if P̂3(u0)Ĝ
′
3(u0) < 0, or Ĝ′3(u0) = Ĝ′′3(u0) = 0 and

P̂3(u0)Ĝ
(3)
3 (u0) < 0.

–a saddle–node if Ĝ′3(u0) = 0 and Ĝ′′3(u0) 6= 0.
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A singularity Iy of system H located at the end of the y–axis is
– a saddle if c12 > 1, or c12 = 1, d12 = c21 and d21 < c30;
– a stable node if c12 < 1, or c12 = 1, d12 = c21 and d21 > c30;
– a saddle–node if c12 = 1 and d12 6= c21.

Summarizing the above analysis and going back to the original system
X111, the invariant line y = u0x of system H as u0 6= 0 is an invariant
curve of system X111, which is tangent to the y-axis at the origin and
connects the origin and the singularity Iu0 at infinity. Moreover, the
invariant curve is usually a separatrix of hyperbolic sectors, parabolic
sectors or elliptic sectors.

The above analysis provide enough preparation for studying global
topological phase portraits of the quintic quasi-homogeneous system X111.
By the properties of the singularities at infinity, we discuss three cases:
a14 > 1, a14 < 1 and a14 = 1, and get 52 global topological phase
portraits of quintic quasi–homogeneous system X111.
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Figure: Global phase portraits of system X111 as a14 < 1.
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Remark: Global structures of generic QHS

Theorem

[Tang& Zhang, preprint, 2016] Any quasi–homogeneous but
non–homogeneous polynomial differential system (1) of degree n can be
transformed into a homogeneous polynomial differential system by an
appropriate changes of variables.

Then, we can investigate global structures of QHS with an arbitrary degree
by a similar idea as the study of quintic QHS.
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