A Dynamical Systems Approach to Singularities of Ordinary Differential Equations

Matthias Seiß and Werner M. Seiler

Institut für Mathematik

U N I K A S S E L V E R S I T 'A' T

Werner M. Seiler (Kassel)

Singularities of Differential Equations

Many forms of singular behaviour in the context of differential equations

- (derivatives of) *solutions* become singular \rightsquigarrow "blow-up", "shock"
- stationary points of vector fields
- bifurcations in parameter dependent systems
- *singular integrals* (solutions not contained in the "general integral")
- multi-valued solutions (like "breaking waves")

here: geometric modelling of differential equations \rightsquigarrow *critical points* of natural projection map \rightsquigarrow **geometric singularities**

• . . .

Singularities of Differential Equations

differential topology

- *definition* of singularities (of smooth maps)
- main emphasis on classifications and local normal forms
- hardly any works on (general) systems

classical analysis

- mainly quasi-linear systems (including DAEs)
- rich literature on scalar equations
- existence, uniqueness and regularity of solutions through singularity
- main techniques: *fixed point theorems, sub-* and *supersolutions*

differential algebra

- main emphasis on *singular integrals*
- motivating problem for differential ideal theory
- (geometric) singularities eliminated
- useful for *algorithmic* approaches
- singularities related to differential Galois theory

Geometric Setting

- fibred manifold: $\pi: \mathcal{E}
 ightarrow \mathcal{T}$ with dim $\mathcal{T} = 1$
 - trivial case: $\mathcal{E}=\mathcal{T} imes\mathcal{U}$, $\pi=\mathrm{pr}_1$
 - adapted local coordinates: (t, u) (independent variable t, dependent variables u)
- section: smooth map $\sigma : \mathcal{T} \to \mathcal{E}$ with $\pi \circ \sigma = \mathrm{id}$ (locally: $\sigma(t) = (t, \mathbf{s}(t))$ with function $\mathbf{s} : \mathcal{T} \to \mathcal{U}$)
- q-jet [σ]^(q)_t: class of all sections with same Taylor polynomial of degree q around expansion point t
- jet bundle $\mathcal{J}_q \pi$: set of all q-jets $[\sigma]_t^{(q)}$
 - local coordinates: $(t, \mathbf{u}^{(q)})$ (derivatives up to order q)
 - natural hierarchy with projections

$$\pi_{\mathbf{r}}^{\mathbf{q}}: \mathcal{J}_{\mathbf{q}}\pi \longrightarrow \mathcal{J}_{\mathbf{r}}\pi \qquad 0 \leq \mathbf{r} < \mathbf{q}$$

$$\pi^{\mathbf{q}}: \mathcal{J}_{\mathbf{q}}\pi \longrightarrow \mathcal{T}$$

Werner M. Seiler (Kassel)

Geometric Setting

Definition

ordinary differential equation of order $q \rightsquigarrow$ submanifold $\mathcal{R}_q \subseteq \mathcal{J}_q \pi$ such that im $\pi^q|_{\mathcal{R}_q}$ dense in \mathcal{T}

- more general definition than usual in geometric theory
- no conditions on independent variable allowed
- no distinction scalar equation or system
- basic assumption: equation formally integrable (no "hidden" integrability conditions)

Geometric Setting

prolongation of section $\sigma: \mathcal{T} \to \mathcal{E} \quad \rightsquigarrow \quad \text{section} \quad j_q \sigma: \mathcal{T} \to \mathcal{J}_q \pi$

$$j_{q}\sigma(t) = (t, \mathbf{s}(t), \dot{\mathbf{s}}(t), \dots, \mathbf{s}^{(q)}(t))$$

Definition *classical solution* \rightsquigarrow section $\sigma : \mathcal{T} \to \mathcal{E}$ such that $\operatorname{im}(j_a \sigma) \subseteq \mathcal{R}_a$

Definition

contact distribution $C_q \subset T(\mathcal{J}_q \pi)$ generated by vector fields

$$C_{\text{trans}}^{(q)} = \partial_t + \sum_{\alpha=1}^m \sum_{j=0}^{q-1} u_{j+1}^{\alpha} \partial_{u_j^{\alpha}}$$
$$C_{\alpha}^{(q)} = \partial_{u_q^{\alpha}} \qquad 1 \le \alpha \le m$$

Proposition

section
$$\gamma : \mathcal{T} \to \mathcal{J}_{q}\pi$$
 of the form $\gamma = j_{q}\sigma \iff Tim(\gamma) \subset \mathcal{C}_{q}$

Proof.

chain rule!

Werner M. Seiler (Kassel)

Consider prolonged solution $j_q \sigma$ of equation $\mathcal{R}_q \subseteq \mathcal{J}_q \pi$:

- integral elements \rightsquigarrow $T_{\rho}(\operatorname{im}(j_q\sigma))$ for $\rho \in \operatorname{im}(j_q\sigma)$
- solution $\implies T_{\rho}(\operatorname{im}(j_q\sigma)) \subseteq T_{\rho}\mathcal{R}_q$
- prolonged section \implies $T_{
 ho}(\mathrm{im}(j_q\sigma)) \subseteq \mathcal{C}_q|_{
 ho}$

Definition

Vessiot space at point $\rho \in \mathcal{R}_q$: $\mathcal{V}_{\rho}[\mathcal{R}_q] = \mathcal{T}_{\rho}\mathcal{R}_q \cap \mathcal{C}_q|_{\rho}$

- generally: dim V_ρ[R_q] depends on ρ →→ regular distribution only on open subset of R_q
- computing Vessiot distribution V[R_q] corresponds to "projective" form of prolonging from R_q to R_{q+1}
- computation requires only linear algebra

Consider square first-order ordinary differential equation $\mathcal{R}_1 \subset \mathcal{J}_1 \pi$ with local representation $\Phi(t, \mathbf{u}, \dot{\mathbf{u}}) = 0$ where $\Phi : \mathcal{J}_1 \pi \to \mathbb{R}^m$

• define $m \times m$ matrix A and m-dimensional vector **d**

$$A = \mathbf{C}^{(1)} \mathbf{\Phi} = \frac{\partial \mathbf{\Phi}}{\partial \dot{\mathbf{u}}} \qquad \mathbf{d} = C^{(1)}_{\text{trans}} \mathbf{\Phi} = \frac{\partial \mathbf{\Phi}}{\partial t} + \frac{\partial \mathbf{\Phi}}{\partial \mathbf{u}} \cdot \dot{\mathbf{u}}$$

assume A almost everywhere non-singular

- compute determinant $\delta = \det A$ and adjugate $C = \operatorname{adj} A$
- $\mathcal{V}[\mathcal{R}_1]$ almost everywhere generated by single vector field

$$X = \delta C_{\text{trans}}^{(1)} - (C\mathbf{d})^T \mathbf{C}^{(1)}$$

(X essentially lift of "evolutionary vector field" associated to given differential equation to $\mathcal{J}_1\pi$)

Werner M. Seiler (Kassel)

Definition

ordinary differential equation $\mathcal{R}_{q} \subseteq \mathcal{J}_{q}\pi$

- generalised solution \rightsquigarrow integral curve $\mathcal{N} \subseteq \mathcal{R}_q$ of $\mathcal{V}[\mathcal{R}_q]$
- geometric solution \rightsquigarrow projection $\pi_0^q(\mathcal{N})$ of generalised solution \mathcal{N}

- geometric solution in general *not* image of a section (thus *no* interpretation as a function!)
- geometric solution $\pi_0^q(\mathcal{N})$ is classical solution \iff \mathcal{N} everywhere transversal to π^q
- geometric solutions allow for modelling of *multi-valued* solutions

Geometric Singularities

Ordinary differential equation $\mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$

- local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) (not necessarily square \rightarrow "DAEs" included)
- Assumptions:
 - equation formally integrable
 - equation of *finite type* $\rightarrow \partial \Phi / \partial u_q$ has almost everywhere rank m
- second assumption \implies almost everywhere dim $\mathcal{V}_{\rho}[\mathcal{R}_q] = 1$

Geometric Singularities

Definition

point $\rho \in \mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$ is

- regular $\rightsquigarrow \mathcal{V}_{\rho}[\mathcal{R}_q]$ 1-dimensional and transversal to π^q
- regular singular $\rightsquigarrow \mathcal{V}_{\rho}[\mathcal{R}_q]$ 1-dimensional and not transversal to π^q
- irregular singular (s-singular) \rightsquigarrow dim $\mathcal{V}_{\rho}[\mathcal{R}_q] = 1 + s$ with s > 0(singular points \rightsquigarrow critical points of $\pi_0^q|_{\mathcal{R}_q}$)

Proposition

point $\rho \in \mathcal{R}_q \subset \mathcal{J}_q \pi$

- ρ regular \iff rank $(\mathbf{C}^{(q)}\mathbf{\Phi})_{\rho} = m$
- ho regular singular \iff ho not regular and

$$\operatorname{rank}\left(\mathbf{C}^{(q)}\mathbf{\Phi} \mid C_{\operatorname{trans}}^{(q)}\mathbf{\Phi}\right)_{\rho} = m$$

Werner M. Seiler (Kassel)

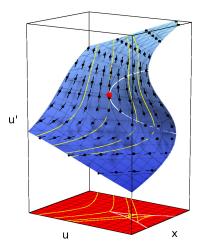
Theorem

- $\mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$ equation without irregular singularities
 - $ho \in \mathcal{R}_q$ regular point \implies
 - (i) unique classical solution σ exists with $\rho \in \operatorname{im} j_q \sigma$
 - (ii) solution σ can be extended in any direction until $j_q \sigma$ reaches either boundary of \mathcal{R}_q or a regular singularity
 - $ho \in \mathcal{R}_q$ regular singularity \implies dichotomy
 - (i) either two classical solutions σ_1 , σ_2 exist with $\rho \in \text{im } j_q \sigma_i$ (both ending or both starting in ρ)
 - (ii) or one classical solution σ exists with ρ ∈ im j_qσ whose derivative of order q + 1 blows up at t = π^q(ρ)

Proof.

- $\mathcal{V}[\mathcal{R}_q]$ locally generated by vector field X
- ρ regular singularity $\implies X$ vertical wrt π^q
- dichotomy $\rightsquigarrow \partial_t$ -component of vector field X does or does not change sign at ρ

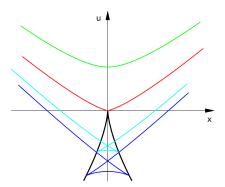
Example: $\dot{u}^3 + u\dot{u} - t = 0$ (hyperbolic gather)



singularity manifold (criminant): $3\dot{u}^2 + u = 0$

(visible part contains only regular singularities)

Example: $\dot{u}^3 + u\dot{u} - t = 0$ (hyperbolic gather)



second derivative of geometric solution touching "tip" of *discriminant* (projection of criminant) blows up

below intersections of criminant and generalised solutions geometric solutions "change direction" let $ho \in \mathcal{R}_q$ be an *irregular* singularity

- consider simply connected open set $U \subset \mathcal{R}_q$ without any irregular singularities such that $\rho \in \overline{\mathcal{U}}$
- in \mathcal{U} Vessiot distribution $\mathcal{V}[\mathcal{R}_q]$ generated by single vector field X

Proposition

Generically any smooth extension of X vanishes at ρ

Proof.

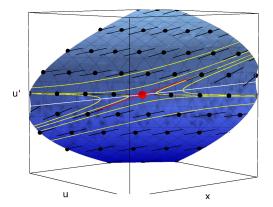
- elementary linear algebra of adjugate matrix
- problem: do components of X possess common divisor?

Conjecture: not true, if and only if ρ lies on singular integral

Werner M. Seiler (Kassel)

Example: $\dot{u}^3 + u\dot{u} - t = 0$ (hyperbolic gather)

neighbourhood of an irregular singularity



stable/unstable manifolds define *intersecting* generalised solutions!

Werner M. Seiler (Kassel)

Comparison with dynamical systems theory

- use of Vessiot distribution transforms *implicit* differential equation into an *explicit* (and autonomous) one
- one-dimensional distribution defines only *direction*, not an *arrow* $\rightarrow X$ and -42X define same distribution!
- *absolute* signs of (real parts of) eigenvalues meaningless; only relative signs matter
- different (smooth) *centre manifolds* yield different generalised solutions
- generalised solutions through irregular singularity are one-dimensional invariant manifolds of vector field X with discrete α and ω limit sets
 - \rightsquigarrow consist of orbits separated by isolated stationary points

Open problems/questions:

- determine number of generalised solutions through irregular singularity: none, finitely many, infinitely many
- regularity theory ~~ possible via prolongations
- going beyond scalar first-order equations requires local phase portraits in *more than two dimensions*
- (un)stable/centre manifold *higher-dimensional* \rightsquigarrow does it always contain *one-dimensional* invariant manifolds with discrete α and ω limit set \rightsquigarrow requires tangential information
- what about complex differential equations?
- do everything *algorithmically* (at least for polynomial differential equations)