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Singularities of Differential Equations

Many forms of singular behaviour in the context of differential equations

(derivatives of) solutions become singular ~~  “blow-up”, “shock”
e stationary points of vector fields

bifurcations in parameter dependent systems

e singular integrals (solutions not contained in the “general integral”)

multi-valued solutions (like “breaking waves")

here: geometric modelling of differential equations ~- critical points
of natural projection map ~~ geometric singularities
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Singularities of Differential Equations

¢ differential topology
definition of singularities (of smooth maps)
main emphasis on classifications and local normal forms
hardly any works on (general) systems
e classical analysis
mainly quasi-linear systems (including DAEs)
rich literature on scalar equations
existence, uniqueness and regularity of solutions through singularity
main techniques: fixed point theorems, sub- and supersolutions
o differential algebra
main emphasis on singular integrals
motivating problem for differential ideal theory
(geometric) singularities eliminated
useful for algorithmic approaches
singularities related to differential Galois theory
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Geometric Setting

e fibred manifold: m:& — T with dm7 =1
trivial case: £ =T xU, 7=pr
adapted local coordinates: (t,u)
(independent variable t, dependent variables u)

e section: smooth map o :T — & with moo =id
(locally: o(t) = (t,s(t)) with function s: 7 — U)

° g-jet [a]ﬁ"): class of all sections with same Taylor polynomial of
degree g around expansion point t

e jet bundle Jym: set of all g-jets [a]ﬁ")

local coordinates: (t,u(?)) (derivatives up to order q)
natural hierarchy with projections

7l Jgm — T 0<r<g

7l Jgm — T
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Geometric Setting

Definition

ordinary differential equation of order g ~~
submanifold R, € Jym such that im 7rq|73q dense in T

more general definition than usual in geometric theory

no conditions on independent variable allowed

no distinction scalar equation or system

e basic assumption: equation formally integrable
(no “hidden” integrability conditions)
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Geometric Setting

prolongation of section o : T — & ~» section j,o:T — Jym

Jao(t) = (t,s(t),8(t), . ..,s(t))

Definition

classical solution ~~ section o : T — & such that im(jso) C R,
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Vessiot Distribution

contact distribution C, C T(J,m) generated by vector fields
(@) S
Comns = O+ > > ufy 000
a=1 j=0
CD=8, 1<a<m

Proposition
section v :T — Jqm of the form v = j,o <= Tim(y) CC,

chain rule! O] I
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Vessiot Distribution

Consider prolonged solution j,o of equation R, C J,:
o integral elements ~ T,(im(jy0)) for p € im(jqo)
e solution = T,(im(jq0)) C T,Rq
e prolonged section = T,(im(jq0)) C Cql,

Definition

Vessiot space at point p € Rq: V,[Rq] = T,RqNCql,

e generally: dimV,[R,] dependson p ~~
regular distribution only on open subset of R,

e computing Vessiot distribution V[R] corresponds to “projective”
form of prolonging from R, to Rg41

e computation requires only linear algebra
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Vessiot Distribution

Consider square first-order ordinary differential equation R; C Jim with
local representation ®(t,u,u) =0 where ® : Jym — R™

e define m x m matrix A and m-dimensional vector d

od od 8¢
A=cWe =27 —cY &=
c 8U d Ctrans a + 5 (9[]

assume A almost everywhere non-singular
e compute determinant § = det A and adjugate C = adj A
e V[R;] almost everywhere generated by single vector field

X =o6c)

trans

—(cd)Tct

(X essentially lift of “evolutionary vector field” associated to given
differential equation to J17)
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Vessiot Distribution

Definition

ordinary differential equation R, C J,m
o generalised solution ~~ integral curve N'C R, of V[R]

e geometric solution ~~ projection mj(N\') of generalised solution N/

e geometric solution in general not image of a section
(thus no interpretation as a function!)

e geometric solution 7§ (N) is classical solution <=
N everywhere transversal to 79

e geometric solutions allow for modelling of multi-valued solutions
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Geometric Singularities

Ordinary differential equation R, C Jym
o local description:  ®(t,ul?)) =0 (dimu= m)
(not necessarily square ~~ “DAEs" included )
e Assumptions:

equation formally integrable
equation of finite type ~» O0®/Ou, has almost everywhere rank m

e second assumption = almost everywhere dimV,[R,] =1
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Geometric Singularities

point p € Rq C Jym is
e regular ~~ V,[R,] 1-dimensional and transversal to 79
e regular singular ~~ V,[R,] 1-dimensional and not transversal to 79
e irregular singular (s-singular) ~ dimV,[R,] =1+ s with s >0

(singular points ~~ critical points of 7|z, )

Proposition
point p € Ry C Jqm
e p regular <= rank (C(q)d))p =m

| A\

e p regular singular <= p not regular and

rank (C(q)tb | clo d))p =m

trans
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Regular Singularities

Rq C Jgm equation without irregular singularities
* p € Ry regular point —>
(i) unique classical solution o exists with p € im joo

(ii) solution o can be extended in any direction until j,o reaches either
boundary of R, or a regular singularity

* p € Ry regular singularity —> dichotomy
(i) either two classical solutions o1, o2 exist with p € im j,0;
(both ending or both starting in p)
(ii) or one classical solution o exists with p € im j,o whose derivative of
order g + 1 blows up at t = w9(p)
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Regular Singularities

e V[R,] locally generated by vector field X

e p regular singularity — X vertical wrt 79

e dichotomy ~~ OJ;-component of vector field X does or does not
change sign at p Ol
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Regular Singularities

Example: °+ ui—t=0 (hyperbolic gather)

singularity manifold
(criminant):

30 +u=0

(visible part contains only
regular singularities)

Werner M. Seiler (Kassel) Singularities of ODEs 6/8



Regular Singularities

Example: °+ ui—t=0 (hyperbolic gather)
second derivative of geo-
metric solution touching
“tip"  of discriminant
vt (projection of criminant)

\ blows up

below intersections of
criminant and generalised
solutions geometric solu-
tions “change direction”

x
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Irregular Singularities

let p € Ry be an irregular singularity

e consider simply connected open set U/ C R, without any irregular
singularities such that p e U

e in U Vessiot distribution V[R,] generated by single vector field X

Proposition
Generically any smooth extension of X vanishes at p

o elementary linear algebra of adjugate matrix

e problem: do components of X possess common divisor? O

Conjecture: not true, if and only if p lies on singular integral
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Irregular Singularities

Example: °+ ui—t=0 (hyperbolic gather)

neighbourhood of an irregular singularity

— e ——
—

u bd

stable/unstable manifolds define intersecting generalised solutions!
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Conclusions

Comparison with dynamical systems theory

e use of Vessiot distribution transforms implicit differential equation
into an explicit (and autonomous) one

e one-dimensional distribution defines only direction, not an arrow
~ X and —42X define same distribution!

e absolute signs of (real parts of) eigenvalues meaningless; only relative
signs matter

e different (smooth) centre manifolds yield different generalised
solutions

e generalised solutions through irregular singularity are one-dimensional
invariant manifolds of vector field X with discrete & and w limit sets
~» consist of orbits separated by isolated stationary points
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Conclusions

Open problems/questions:
e determine number of generalised solutions through irregular
singularity: none, finitely many, infinitely many
e regularity theory ~~ possible via prolongations

e going beyond scalar first-order equations requires local phase portraits
in more than two dimensions

e (un)stable/centre manifold higher-dimensional ~~ does it always
contain one-dimensional invariant manifolds with discrete o and w
limit set ~~ requires tangential information

e what about complex differential equations?

e do everything algorithmically
(at least for polynomial differential equations)
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