Invariant varieties for rational control systems

Christian Schilli

3rd of August ACA 2016, Kassel

- Invariant varieties for autonomous systems

- Invariant varieties for autonomous systems
- Controlled invariant varieties

- Invariant varieties for autonomous systems
- Controlled invariant varieties
 - for **rational** control systems

- Invariant varieties for autonomous systems
- Controlled invariant varieties
 - for **rational** control systems
 - with rational state feedback (polynomial case o Paper MTNS '14)

- Invariant varieties for autonomous systems
- Controlled invariant varieties
 - for **rational** control systems
 - with ${f rational}$ state feedback (polynomial case o Paper MTNS '14)
- Controlled and conditioned invariant varieties
 - for rational control systems with polynomial output

- Invariant varieties for autonomous systems
- Controlled invariant varieties
 - for rational control systems
 - with ${f rational}$ state feedback (polynomial case ightarrow Paper MTNS '14)
- Controlled and conditioned invariant varieties
 - for rational control systems with polynomial output
 - with **rational** output feedback

- Invariant varieties for autonomous systems
- Controlled invariant varieties
 - for **rational** control systems
 - with rational state feedback (polynomial case o Paper MTNS '14)
- Controlled and conditioned invariant varieties
 - for rational control systems with polynomial output
 - with rational output feedback

<u>Motivation:</u> Generalize concept of "controlled and conditioned invariant subspaces for linear control systems"

Notations

- $k, m, n, p \in \mathbb{N}$
- $K \in \{\mathbb{R}, \mathbb{C}\}$
- $R = K[x_1, \dots, x_n]$ polynomial ring
- $Q = \{rac{p}{a} \mid p,q \in R, q
 eq 0\}$ quotient field
- $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ ideal of R
- $V = \mathcal{V}(\mathcal{I}) = \{x \in K^n \mid p_i(x) = 0 \text{ for } i = 1, \dots, k\} \subseteq K^n \text{ variety}$
- $\mathcal{J}(V) = \{ p \in R \mid p(x) = 0 \text{ for all } x \in V \}$ vanishing ideal

Assumption:
$$\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$$

For $h \in \mathbb{R}^p$:

- $K[\underline{h}] := K[h_1, \ldots, h_p] \subseteq R$ subalgebra
- $K(\underline{h}) := K(h_1, \ldots, h_p) \subseteq Q$ subfield

Let
$$U\subseteq K^n$$
 be open, $x_0\in U$ and $F\in \mathcal{C}^1(U,K^m)$. Consider $\dot{x}(t)=F(x(t)),\quad x(0)=x_0.$

Let $U\subseteq K^n$ be open, $x_0\in U$ and $F\in \mathcal{C}^1(U,K^m)$. Consider $\dot{x}(t)=F(x(t)),\quad x(0)=x_0.$

Theorem (Global existence and uniqueness)

For all $x_0 \in U$ there is a unique solution

$$\varphi(\cdot,x_0)\in\mathcal{C}^1(J(x_0),U)$$

of (1), where $0 \in J(x_0) \subseteq \mathbb{R}$ is the maximal interval of existence.

Let
$$U\subseteq K^n$$
 be open, $x_0\in U$ and $F\in \mathcal{C}^1(U,K^m)$. Consider $\dot{x}(t)=F(x(t)),\quad x(0)=x_0.$

Theorem (Global existence and uniqueness)

For all $x_0 \in U$ there is a unique solution

$$\varphi(\cdot,x_0)\in\mathcal{C}^1(J(x_0),U)$$

of (1), where $0 \in J(x_0) \subseteq \mathbb{R}$ is the maximal interval of existence.

Definition

We call $V = \mathcal{V}(\mathcal{I})$ invariant for F if $U \cap V \neq \emptyset$

Let
$$U\subseteq K^n$$
 be open, $x_0\in U$ and $F\in \mathcal{C}^1(U,K^m)$. Consider $\dot{x}(t)=F(x(t)),\quad x(0)=x_0.$

Theorem (Global existence and uniqueness)

For all $x_0 \in U$ there is a unique solution

$$\varphi(\cdot,x_0)\in\mathcal{C}^1(J(x_0),U)$$

of (1), where $0 \in J(x_0) \subseteq \mathbb{R}$ is the maximal interval of existence.

Definition

We call $V = \mathcal{V}(\mathcal{I})$ invariant for F if $U \cap V \neq \emptyset$ and

$$x_0 \in U \cap V \Rightarrow \varphi(t, x_0) \in U \cap V$$
 for all $t \in J(x_0)$.

Let $U\subseteq K^n$ be open, $x_0\in U$ and $F\in \mathcal{C}^1(U,K^m)$. Consider $\dot{x}(t)=F(x(t)),\quad x(0)=x_0.$

Theorem (Global existence and uniqueness)

For all $x_0 \in U$ there is a unique solution

$$\varphi(\cdot,x_0)\in\mathcal{C}^1(J(x_0),U)$$

of (1), where $0 \in J(x_0) \subseteq \mathbb{R}$ is the maximal interval of existence.

Definition

We call $V=\mathcal{V}(\mathcal{I})$ invariant for F if $U\cap V
eq\emptyset$ and

$$x_0 \in U \cap V \Rightarrow \varphi(t, x_0) \in U \cap V$$
 for all $t \in J(x_0)$.

In this case: F vector field on V.

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

 $F \in \mathbb{R}^n$

 $\underline{\mathsf{Given:}} \ \ \mathcal{I} = \langle p_1, \dots, p_k \rangle \ \mathsf{an ideal of} \ \ R \ \mathsf{ideal satisfying}$

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n$$

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V = \mathcal{V}(\mathcal{I})
eq \emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$.

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n \implies U \cap V = V \neq \emptyset$$

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n \implies U \cap V = V \neq \emptyset$$

$$\mathcal{M} := \{ F \in \mathbb{R}^n \mid F \text{ vector field on } \mathcal{V}(\mathcal{I}) \} \subseteq \mathbb{R}^n$$

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n \implies U \cap V = V \neq \emptyset$$

$$\mathcal{M} := \{ F \in \mathbb{R}^n \mid F \text{ vector field on } \mathcal{V}(\mathcal{I}) \} \subseteq \mathbb{R}^n$$

Theorem

The following statements are equivalent:

- 1. $V = \mathcal{V}(\mathcal{I})$ is invariant for $F \in \mathbb{R}^n$.
- **2.** $\sum_{i=1}^{n} \partial_i p_j \cdot F_i \in \mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ for all j = 1, ..., k.

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n \implies U \cap V = V \neq \emptyset$$

$$\mathcal{M} := \{ F \in \mathbb{R}^n \mid F \text{ vector field on } \mathcal{V}(\mathcal{I}) \} \subseteq \mathbb{R}^n$$

Theorem

The following statements are equivalent:

- 1. $V = \mathcal{V}(\mathcal{I})$ is invariant for $F \in \mathbb{R}^n$.
- **2.** $\sum_{i=1}^{n} \partial_i p_j \cdot F_i \in \mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ for all j = 1, ..., k.
- 3. $F \in \mathcal{M}$.

<u>Given:</u> $\mathcal{I} = \langle p_1, \dots, p_k \rangle$ an ideal of R ideal satisfying

$$V=\mathcal{V}(\mathcal{I})
eq\emptyset$$
 and $\mathcal{J}(\mathcal{V}(\mathcal{I}))=\mathcal{I}.$

$$F \in \mathbb{R}^n \implies F \in \mathcal{C}^1(U, K^m) \text{ for } U = K^n \implies U \cap V = V \neq \emptyset$$

$$\mathcal{M}:=\{F\in R^n\mid F \text{ vector field on } \mathcal{V}(\mathcal{I})\}\subseteq R^n$$
 is an R -module (computable with Gröbner bases) \checkmark

Theorem

The following statements are equivalent:

- 1. $V = \mathcal{V}(\mathcal{I})$ is invariant for $F \in \mathbb{R}^n$.
- **2.** $\sum_{i=1}^n \partial_i p_j \cdot F_i \in \mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ for all $j = 1, \dots, k$.
- 3. $F \in \mathcal{M}$.

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Then $\frac{1}{d} \cdot F \in \mathcal{C}^1(U, K^n)$ for $U = K^n \setminus \mathcal{V}(d)$.

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Then
$$\frac{1}{d} \cdot F \in \mathcal{C}^1(U, K^n)$$
 for $U = K^n \setminus \mathcal{V}(d)$. Since $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$:

$$\emptyset \neq \textit{U} \cap \textit{V} = (\textit{K}^{\textit{n}} \setminus \textit{V}(\textit{d})) \cap \textit{V}(\textit{I}) \iff \textit{d} \notin \textit{I}.$$

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Then
$$\frac{1}{d} \cdot F \in \mathcal{C}^1(U, K^n)$$
 for $U = K^n \setminus \mathcal{V}(d)$. Since $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$:

$$\emptyset \neq \textit{U} \cap \textit{V} = (\textit{K}^{\textit{n}} \setminus \textit{V}(\textit{d})) \cap \textit{V}(\textit{I}) \iff \textit{d} \notin \textit{I}.$$

Theorem

1. If $d \notin \mathcal{I}$ and $F \in \mathcal{M}$, then $\mathcal{V}(\mathcal{I})$ is invariant for $\frac{1}{d} \cdot F$.

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Then
$$\frac{1}{d} \cdot F \in \mathcal{C}^1(U, K^n)$$
 for $U = K^n \setminus \mathcal{V}(d)$. Since $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$:

$$\emptyset \neq U \cap V = (K^n \setminus \mathcal{V}(d)) \cap \mathcal{V}(\mathcal{I}) \iff d \notin \mathcal{I}.$$

Theorem

- 1. If $d \notin \mathcal{I}$ and $F \in \mathcal{M}$, then $\mathcal{V}(\mathcal{I})$ is invariant for $\frac{1}{d} \cdot F$.
- **2.** If $\mathcal{V}(\mathcal{I})$ is invariant for $\frac{1}{d} \cdot F$, then $d \notin \mathcal{I}$

Let $d \in R \setminus \{0\}$ and $F \in R^n$, consider $\dot{x} = \frac{1}{d} \cdot F$.

Then
$$\frac{1}{d} \cdot F \in \mathcal{C}^1(U, K^n)$$
 for $U = K^n \setminus \mathcal{V}(d)$. Since $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$:

$$\emptyset \neq U \cap V = (K^n \setminus \mathcal{V}(d)) \cap \mathcal{V}(\mathcal{I}) \iff d \notin \mathcal{I}.$$

Theorem

- **1.** If $d \notin \mathcal{I}$ and $F \in \mathcal{M}$, then $\mathcal{V}(\mathcal{I})$ is invariant for $\frac{1}{d} \cdot F$.
- **2.** If $\mathcal{V}(\mathcal{I})$ is invariant for $\frac{1}{d} \cdot F$, then $d \notin \mathcal{I}$ and

$$\sum_{i=1}^n \partial_i p_j \cdot F_i \in \mathcal{J}(V \setminus \mathcal{V}(d)) \text{ for all } j = 1, \dots, k.$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}:\mathcal{K}:=\{r\in R\mid r\cdot\mathcal{K}\subseteq\mathcal{I}\}.$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}:\mathcal{K}:=\{r\in R\mid r\cdot\mathcal{K}\subseteq\mathcal{I}\}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I})\setminus\mathcal{V}(\mathcal{K}))=\mathcal{J}(\mathcal{V}(\mathcal{I})):\mathcal{J}(\mathcal{V}(\mathcal{K})).$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}:\mathcal{K}:=\{r\in R\mid r\cdot\mathcal{K}\subseteq\mathcal{I}\}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}: \mathcal{K} := \{ r \in R \mid r \cdot \mathcal{K} \subseteq \mathcal{I} \}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Corollary

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}: \mathcal{K} := \{ r \in R \mid r \cdot \mathcal{K} \subseteq \mathcal{I} \}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Corollary

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(d))$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}: \mathcal{K} := \{ r \in R \mid r \cdot \mathcal{K} \subseteq \mathcal{I} \}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Corollary

$$\mathcal{J}(\mathcal{V}(\mathcal{I})\setminus\mathcal{V}(d))=\mathcal{J}(\mathcal{V}(\mathcal{I})):\mathcal{J}(\mathcal{V}(d))$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}: \mathcal{K} := \{ r \in R \mid r \cdot \mathcal{K} \subseteq \mathcal{I} \}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Corollary

$$\mathcal{J}(\mathcal{V}(\mathcal{I})\setminus\mathcal{V}(d))=\mathcal{J}(\mathcal{V}(\mathcal{I})):\mathcal{J}(\mathcal{V}(d))=\mathcal{I}:\mathcal{J}(\mathcal{V}(d))$$

Definition

For ideals $\mathcal{I}, \mathcal{K} \subseteq R$ define the **ideal quotient** of \mathcal{I} by \mathcal{K} :

$$\mathcal{I}: \mathcal{K} := \{ r \in R \mid r \cdot \mathcal{K} \subseteq \mathcal{I} \}.$$

Properties

- Let $\mathcal{I}, \mathcal{K} \subseteq R$ be ideals. Then we have

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(\mathcal{K})) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(\mathcal{K})).$$

- If \mathcal{I} is prime and $d \notin \mathcal{I}$, then

$$\mathcal{I}: \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Corollary

$$\mathcal{J}(\mathcal{V}(\mathcal{I}) \setminus \mathcal{V}(d)) = \mathcal{J}(\mathcal{V}(\mathcal{I})) : \mathcal{J}(\mathcal{V}(d)) = \mathcal{I} : \mathcal{J}(\mathcal{V}(d)) = \mathcal{I}.$$

Rational vector fields on $V = \mathcal{V}(\mathcal{I})$

Corollary

Consider $\mathcal{I} \subseteq R$ a prime ideal satisfying $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$.

Rational vector fields on $V = \mathcal{V}(\mathcal{I})$

Corollary

Consider $\mathcal{I} \subseteq R$ a prime ideal satisfying $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$.

If $d \in R \setminus \{0\}$ and $F \in R^n$, the following statements are equivalent:

Rational vector fields on $V = \mathcal{V}(\mathcal{I})$

Corollary

Consider $\mathcal{I} \subseteq R$ a prime ideal satisfying $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$. If $d \in R \setminus \{0\}$ and $F \in R^n$, the following statements are equivalent:

- **1.** $V(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

Controlled invariant varieties

Consider a rational control system:

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t) \tag{2}$$

x(t) state at time t $g \in Q^{n \times m}$ control matrix u input function n number of states

 $f \in Q^n$ autonomous part *m* number of inputs

Controlled invariant varieties

Consider a rational control system:

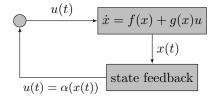
$$\dot{x}(t) = f(x(t)) + g(x(t))u(t) \tag{2}$$

x(t) state at time t $g \in Q^{n \times m}$ control matrix n number of states

 $f \in Q^n$ autonomous part u input function m number of inputs

ldea:

Use **state feedback** to make V invariant for (2)



Controlled invariant varieties

Consider a rational control system:

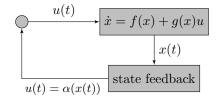
$$\dot{x}(t) = f(x(t)) + g(x(t))u(t) \tag{2}$$

x(t) state at time t $g \in Q^{n \times m}$ control matrix n number of states

 $f \in Q^n$ autonomous part u input function m number of inputs

Idea:

Use **state feedback** to make V invariant for (2)



Definition

We call a variety V controlled invariant for (2) if there is a state feedback $u(t) = \alpha(x(t))$ such that the closed loop $F := f + g\alpha$ is a vector field on V.

Rational control system:

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t)$$
, where $f \in Q^n$, $g \in Q^{n \times m}$. (2)

Rational control system:

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t)$$
, where $f \in Q^n$, $g \in Q^{n \times m}$. (2)

1. Since $f \in Q^n$, there is $e \in R \setminus \{0\}$ and $\tilde{f} \in R^n$ with $f = \frac{1}{e} \cdot \tilde{f}$.

Rational control system:

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t)$$
, where $f \in Q^n$, $g \in Q^{n \times m}$. (2)

- 1. Since $f \in Q^n$, there is $e \in R \setminus \{0\}$ and $\tilde{f} \in R^n$ with $f = \frac{1}{e} \cdot \tilde{f}$.
- 2. We have $\operatorname{im}_Q(g \cdot) = \operatorname{im}_Q(\tilde{g} \cdot)$ for some matrix $\tilde{g} \in R^{n \times m}$.

Rational control system:

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t)$$
, where $f \in Q^n$, $g \in Q^{n \times m}$. (2)

- 1. Since $f \in Q^n$, there is $e \in R \setminus \{0\}$ and $\tilde{f} \in R^n$ with $f = \frac{1}{e} \cdot \tilde{f}$.
- 2. We have $\operatorname{im}_Q(g\cdot)=\operatorname{im}_Q(\tilde{g}\cdot)$ for some matrix $\tilde{g}\in R^{n\times m}$.

Thus, for rational state feedbacks $u(t) = \alpha(x(t))$, where $\alpha \in Q^n$, we may assume w.l.o.g. that (2) takes the form

$$\dot{x}(t) = (\frac{1}{e} \cdot f)(x(t)) + g(x(t))u(t),$$

where $f \in \mathbb{R}^n$, $e \in \mathbb{R} \setminus \{0\}$, $g \in \mathbb{R}^{n \times m}$.

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- **1.** $V(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- 1. $V(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

Controlled invariance: Let $\alpha = \frac{z}{d}$ with $z \in R^m$ and $d \in R \setminus \{0\}$:

$$\frac{1}{e} \cdot f + g\alpha = \frac{1}{e} \cdot f + g \cdot \frac{z}{d} = \frac{fd + egz}{ed} \in Q^n.$$

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- 1. $V(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

Controlled invariance: Let $\alpha = \frac{z}{d}$ with $z \in R^m$ and $d \in R \setminus \{0\}$:

$$\frac{1}{e} \cdot f + g\alpha = \frac{1}{e} \cdot f + g \cdot \frac{z}{d} = \frac{fd + egz}{ed} \in Q^n.$$

Corollary

Let
$$\mathcal{F}:=\{(d,z)\in R^{1+m}\mid \mathit{fd}+\mathit{egz}\in\mathcal{M}\}$$
 (R-module).

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- 1. $V(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

<u>Controlled invariance</u>: Let $\alpha = \frac{z}{d}$ with $z \in R^m$ and $d \in R \setminus \{0\}$:

$$\frac{1}{e} \cdot f + g\alpha = \frac{1}{e} \cdot f + g \cdot \frac{z}{d} = \frac{fd + egz}{ed} \in Q^n.$$

Corollary

Let
$$\mathcal{F}:=\{(d,z)\in R^{1+m}\mid \mathit{fd}+\mathit{egz}\in\mathcal{M}\}$$
 (R-module). TFAE:

- 1. $V(\mathcal{I})$ is controlled invariant.
- **2**. There is $(d, z) \in \mathcal{F}$ such that $ed \notin \mathcal{I}$.

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- 1. $\mathcal{V}(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

<u>Controlled invariance</u>: Let $\alpha = \frac{z}{d}$ with $z \in R^m$ and $d \in R \setminus \{0\}$:

$$\frac{1}{e} \cdot f + g\alpha = \frac{1}{e} \cdot f + g \cdot \frac{z}{d} = \frac{fd + egz}{ed} \in Q^n.$$

Corollary

Let $\mathcal{F} := \{(d,z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$ (R-module). TFAE:

- 1. $V(\mathcal{I})$ is controlled invariant.
- **2**. There is $(d, z) \in \mathcal{F}$ such that $ed \notin \mathcal{I}$.

If \mathcal{I} is not prime, Condition 2. is still sufficient for 1.

Assumption: \mathcal{I} is a prime ideal (resp. $\mathcal{V}(\mathcal{I})$ is irreducible).

Corollary

Let $d \in R \setminus \{0\}$ and $F \in R^n$. TFAE:

- 1. $\mathcal{V}(\mathcal{I})$ is invariant for $\dot{x} = \frac{1}{d} \cdot F$.
- **2.** $F \in \mathcal{M}$ and $d \notin \mathcal{I}$.

<u>Controlled invariance</u>: Let $\alpha = \frac{z}{d}$ with $z \in R^m$ and $d \in R \setminus \{0\}$:

$$\frac{1}{e} \cdot f + g\alpha = \frac{1}{e} \cdot f + g \cdot \frac{z}{d} = \frac{fd + egz}{ed} \in Q^n.$$

Corollary

Let
$$\mathcal{F} := \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$$
 (R-module). TFAE:

- 1. $V(\mathcal{I})$ is controlled invariant.
- **2**. There is $(d, z) \in \mathcal{F}$ such that $ed \notin \mathcal{I}$. \checkmark

If \mathcal{I} is not prime, Condition 2. is still sufficient for 1.

Let $R = \mathbb{R}[w, x, y]$, $\mathcal{I} = \langle p_1, p_2 \rangle$ with $p_1 = xy - w$, $p_2 = xw - y$.

Let $R = \mathbb{R}[w, x, y]$, $\mathcal{I} = \langle p_1, p_2 \rangle$ with $p_1 = xy - w$, $p_2 = xw - y$. Consider $V = \mathcal{V}(\mathcal{I})$ and the polynomial control system

$$\dot{\underline{x}}(t) = \begin{pmatrix} -y \\ x \\ w \end{pmatrix} + \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix} u = f(\underline{x}) + g(\underline{x})u.$$
(3)

Let $R = \mathbb{R}[w, x, y]$, $\mathcal{I} = \langle p_1, p_2 \rangle$ with $p_1 = xy - w$, $p_2 = xw - y$.

Consider $V=\mathcal{V}(\mathcal{I})$ and the polynomial control system

$$\underline{\dot{x}}(t) = \begin{pmatrix} -y \\ x \\ w \end{pmatrix} + \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix} u = f(\underline{x}) + g(\underline{x})u. \tag{3}$$

R-module $\mathcal{M} = \operatorname{im}_R(M)$ of vector fields on V:

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & xy - w & xw - y \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix}.$$

Let $R = \mathbb{R}[w, x, y]$, $\mathcal{I} = \langle p_1, p_2 \rangle$ with $p_1 = xy - w$, $p_2 = xw - y$.

Consider $V=\mathcal{V}(\mathcal{I})$ and the polynomial control system

$$\underline{\dot{x}}(t) = \begin{pmatrix} -y \\ x \\ w \end{pmatrix} + \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix} u = f(\underline{x}) + g(\underline{x})u.$$
(3)

R-module $\mathcal{M} = \operatorname{im}_R(M)$ of vector fields on V:

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & xy - w & xw - y \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix}.$$

We have $f \notin \mathcal{M} + \mathrm{im}_R(g)$.

Let $R = \mathbb{R}[w, x, y]$, $\mathcal{I} = \langle p_1, p_2 \rangle$ with $p_1 = xy - w$, $p_2 = xw - y$.

Consider $V=\mathcal{V}(\mathcal{I})$ and the polynomial control system

$$\dot{\underline{x}}(t) = \begin{pmatrix} -y \\ x \\ w \end{pmatrix} + \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix} u = f(\underline{x}) + g(\underline{x})u.$$
(3)

R-module $\mathcal{M} = \operatorname{im}_R(M)$ of vector fields on V:

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & xy - w & xw - y \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix}.$$

We have $f \notin \mathcal{M} + \mathrm{im}_R(g)$.

 $\Rightarrow V$ not controlled invariant with polynomial state feedback.

$$p_{1} = xy - w, \quad p_{2} = xw - y, \qquad \mathcal{I} = \langle p_{1}, p_{2} \rangle,$$

$$f = \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, \quad g = \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^{2} - 1 & p_{1} & p_{2} \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} p_1 &= xy - w, & p_2 &= xw - y, & \mathcal{I} &= \langle p_1, p_2 \rangle, \\ f &= \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, & g &= \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, & M &= \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & p_1 & p_2 \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Now compute $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + gz \in \mathcal{M}\}$

$$\begin{aligned} p_1 &= xy - w, & p_2 &= xw - y, & \mathcal{I} &= \langle p_1, p_2 \rangle, \\ f &= \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, & g &= \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, & M &= \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & p_1 & p_2 \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix} \\ \text{Now compute } \mathcal{F} &= \{ (d, z) \in R^{1+m} \mid fd + gz \in \mathcal{M} \} = \operatorname{im}_R(L), \\ L &= \begin{pmatrix} 2y & 2xw & 2w & 2w^2 & 0 & 0 & 0 \\ 2 - w & 2 - w & 2x - y & 2y - yw & y^2 - w^2 & 0 & 0 \\ 2w & 2w & 2y & 2yw & 0 & xy - w & xw - y \end{pmatrix}. \end{aligned}$$

$$\begin{split} p_1 &= xy - w, \quad p_2 = xw - y, & \mathcal{I} &= \langle p_1, p_2 \rangle, \\ f &= \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, \quad g = \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & p_1 & p_2 \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix} \\ \text{Now compute } \mathcal{F} &= \{ (d, z) \in R^{1+m} \mid fd + gz \in \mathcal{M} \} = \operatorname{im}_R(L), \\ L &= \begin{pmatrix} 2y & 2xw & 2w & 2w^2 & 0 & 0 & 0 \\ 2 - w & 2 - w & 2x - y & 2y - yw & y^2 - w^2 & 0 & 0 \\ 2w & 2w & 2y & 2yw & 0 & xy - w & xw - y \end{pmatrix}. \end{split}$$

Then $d = 2y \notin \mathcal{I}$.

$$p_1 = xy - w, \quad p_2 = xw - y, \qquad \mathcal{I} = \langle p_1, p_2 \rangle,$$

$$f = \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, \quad g = \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & p_1 & p_2 \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix}$$

Now compute $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + gz \in \mathcal{M}\} = \operatorname{im}_R(L)$,

$$L = \begin{pmatrix} 2y & 2xw & 2w & 2w^2 & 0 & 0 & 0 \\ 2-w & 2-w & 2x-y & 2y-yw & y^2-w^2 & 0 & 0 \\ 2w & 2w & 2y & 2yw & 0 & xy-w & xw-y \end{pmatrix}.$$

Then $d = 2y \notin \mathcal{I}$.

 $\Rightarrow V$ controlled invariant with rational state feedback.

$$\begin{aligned} p_1 &= xy - w, & p_2 &= xw - y, & \mathcal{I} &= \langle p_1, p_2 \rangle, \\ f &= \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, & g &= \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, & M &= \begin{pmatrix} 0 & 0 & 0 & 0 & x^2 - 1 & p_1 & p_2 \\ y & w & xw & w & 0 & 0 & 0 \\ w & y & w & xw & 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Now compute $\mathcal{F} = \{(d, z) \in \mathbb{R}^{1+m} \mid fd + gz \in \mathcal{M}\} = \operatorname{im}_{\mathbb{R}}(L)$,

$$L = \begin{pmatrix} 2y & 2xw & 2w & 2w^2 & 0 & 0 & 0 \\ 2-w & 2-w & 2x-y & 2y-yw & y^2-w^2 & 0 & 0 \\ 2w & 2w & 2y & 2yw & 0 & xy-w & xw-y \end{pmatrix}.$$

Then $d = 2y \notin \mathcal{I}$.

 $\Rightarrow V$ controlled invariant with rational state feedback.

Rational state feedback making V invariant:

$$\alpha = \frac{z}{d} \in Q^2$$
, where $z = \begin{pmatrix} 2 - w \\ 2w \end{pmatrix}$.

Controlled and conditioned invariant varieties

Rational control system with polynomial output:

$$\dot{x}(t) = (\frac{1}{e} \cdot f)(x(t)) + g(x(t))u(t), \quad y(t) = h(x(t))$$
 (4)

y(t) output at time t, $h \in R^p$ output function, p number of outputs

Controlled and conditioned invariant varieties

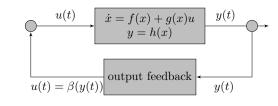
Rational control system with polynomial output:

$$\dot{x}(t) = (\frac{1}{e} \cdot f)(x(t)) + g(x(t))u(t), \quad y(t) = h(x(t))$$
 (4)

y(t) output at time t, $h \in R^p$ output function, p number of outputs

ldee:

Use **output feedback** to make V invariant for (4)



Controlled and conditioned invariant varieties

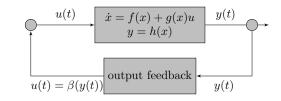
Rational control system with polynomial output:

$$\dot{x}(t) = (\frac{1}{e} \cdot f)(x(t)) + g(x(t))u(t), \quad y(t) = h(x(t))$$
 (4)

y(t) output at time t, $h \in R^p$ output function, p number of outputs

ldee:

Use **output feedback** to make V invariant for (4)



Definition

We call a variety V controlled and conditioned invariant for (4) if there is an output feedback $u(t) = \beta(y(t))$ such that the closed loop system $f + g \cdot \beta(h)$ is a vector field on V.

Controlled and conditioned invariance:

Controlled and conditioned invariance:

(i) Derive the R-module $\mathcal{F} = \{(d,z) \in R^{1+m} \mid \mathit{fd} + \mathit{egz} \in \mathcal{M}\}.$

Controlled and conditioned invariance:

- (i) Derive the R-module $\mathcal{F} = \{(d,z) \in R^{1+m} \mid \mathit{fd} + \mathit{egz} \in \mathcal{M}\}.$
- (ii) Compute the intersection $\mathcal{F}^*:=\mathcal{F}\cap K[\underline{h}]^{1+m}$.

Controlled and conditioned invariance:

- (i) Derive the R-module $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}.$
- (ii) Compute the intersection $\mathcal{F}^* := \mathcal{F} \cap K[\underline{h}]^{1+m}$.
- (iii) Put $\mathcal{D}^* := \mathsf{ideal}$ of first components of \mathcal{F}^* .

Controlled and conditioned invariance:

- (i) Derive the *R*-module $\mathcal{F} = \{(d, z) \in R^{1+m} \mid \mathit{fd} + \mathit{egz} \in \mathcal{M}\}.$
- (ii) Compute the intersection $\mathcal{F}^* := \mathcal{F} \cap K[\underline{h}]^{1+m}$.
- (iii) Put $\mathcal{D}^* := \mathsf{ideal}$ of first components of \mathcal{F}^* .

Theorem

Let
$$q_i \in K[\underline{h}]$$
 with $\mathcal{D}^* = \langle q_1, \dots, q_l \rangle$.

Rational output feedback

Controlled and conditioned invariance:

- (i) Derive the *R*-module $\mathcal{F} = \{(d, z) \in R^{1+m} \mid \mathit{fd} + \mathit{egz} \in \mathcal{M}\}.$
- (ii) Compute the intersection $\mathcal{F}^* := \mathcal{F} \cap K[\underline{h}]^{1+m}$.
- (iii) Put $\mathcal{D}^* := \mathsf{ideal}$ of first components of \mathcal{F}^* .

Theorem

Let
$$q_i \in K[\underline{h}]$$
 with $\mathcal{D}^* = \langle q_1, \dots, q_l \rangle$. TFAE:

- 1. $V(\mathcal{I})$ is controlled and conditioned invariant.
- **2.** There is $i \in \{1, ..., I\}$ with $eq_i \notin \mathcal{I}$

Rational output feedback

Controlled and conditioned invariance:

- (i) Derive the *R*-module $\mathcal{F} = \{(d, z) \in R^{1+m} \mid \mathit{fd} + \mathit{egz} \in \mathcal{M}\}.$
- (ii) Compute the intersection $\mathcal{F}^* := \mathcal{F} \cap K[\underline{h}]^{1+m}$.
- (iii) Put $\mathcal{D}^* := \mathsf{ideal}$ of first components of \mathcal{F}^* .

Theorem

Let $q_i \in K[\underline{h}]$ with $\mathcal{D}^* = \langle q_1, \dots, q_l \rangle$. TFAE:

- 1. $V(\mathcal{I})$ is controlled and conditioned invariant.
- **2.** There is $i \in \{1, ..., I\}$ with $eq_i \notin \mathcal{I} \checkmark$.

For R = K[w, x, y] consider the control system

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad y(t) = h(x(t)),$$

defined by

$$f = \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, g = \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, h = \begin{pmatrix} xy + xw + yw \\ xyw \end{pmatrix}.$$

Furthermore, let $V = \mathcal{V}(\mathcal{I})$, where $\mathcal{I} = \langle xy - w, xw - y \rangle$.

For R = K[w, x, y] consider the control system

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad y(t) = h(x(t)),$$

defined by

$$f = \begin{pmatrix} -y \\ x \\ w \end{pmatrix}, g = \begin{pmatrix} 0 & w \\ -w & 0 \\ y & -x \end{pmatrix}, h = \begin{pmatrix} xy + xw + yw \\ xyw \end{pmatrix}.$$

Furthermore, let $V = \mathcal{V}(\mathcal{I})$, where $\mathcal{I} = \langle xy - w, xw - y \rangle$.

Already computed: $\mathcal{F} = \{(d,z) \mid fd + gz \in \mathcal{M}\} = \operatorname{im}_R(L)$, where

$$L = \begin{pmatrix} 2y & 2xw & 2w & 2w^2 & 0 & 0 & 0 \\ 2-w & 2-w & 2x-y & 2y-yw & y^2-w^2 & 0 & 0 \\ 2w & 2w & 2y & 2yw & 0 & xy-w & xw-y \end{pmatrix}.$$

$$h_1 = xy + xw + yw, \quad h_2 = xyw$$

$$h_1 = xy + xw + yw, \quad h_2 = xyw$$

Compute $\mathcal{F}^* = \mathcal{F} \cap K[h_1,h_2]^3$

$$h_1=xy+xw+yw, \quad h_2=xyw$$
 Compute $\mathcal{F}^*=\mathcal{F}\cap K[h_1,h_2]^3=\mathrm{im}_{K[h_1,h_2]}(L),$ where $L=egin{pmatrix} -2h_1h_2-2h_2^2 & 2h_1^2-2h_2^2 & * \ h_1^2+h_1h_2-4h_1-4h_2 & h_2^2-h_1^2-4h_1-4h_2 & 0 \ -2h_1h_2-2h_2^2 & 2h_1^2-2h_2^2 & 0 \end{pmatrix}$

$$h_1 = xy + xw + yw, \quad h_2 = xyw$$

Compute $\mathcal{F}^* = \mathcal{F} \cap K[h_1,h_2]^3 = \operatorname{im}_{K[h_1,h_2]}(L)$, where

$$L = \begin{pmatrix} -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & * \\ h_1^2 + h_1h_2 - 4h_1 - 4h_2 & h_2^2 - h_1^2 - 4h_1 - 4h_2 & 0 \\ -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & 0 \end{pmatrix}$$

We set $d^* := -2h_1h_2 - 2h_2^2 \in K[h_1, h_2]$ and see $d^* \notin \mathcal{I}$.

$$h_1 = xy + xw + yw, \quad h_2 = xyw$$

Compute $\mathcal{F}^* = \mathcal{F} \cap K[h_1,h_2]^3 = \operatorname{im}_{K[h_1,h_2]}(L)$, where

$$L = \begin{pmatrix} -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & * \\ h_1^2 + h_1h_2 - 4h_1 - 4h_2 & h_2^2 - h_1^2 - 4h_1 - 4h_2 & 0 \\ -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & 0 \end{pmatrix}$$

We set $d^* := -2h_1h_2 - 2h_2^2 \in K[h_1, h_2]$ and see $d^* \notin \mathcal{I}$.

 $\Rightarrow V$ is controlled and conditioned invariant for the given system.

$$h_1 = xy + xw + yw, \quad h_2 = xyw$$

Compute $\mathcal{F}^* = \mathcal{F} \cap K[h_1, h_2]^3 = \operatorname{im}_{K[h_1, h_2]}(L)$, where

$$L = \begin{pmatrix} -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & * \\ h_1^2 + h_1h_2 - 4h_1 - 4h_2 & h_2^2 - h_1^2 - 4h_1 - 4h_2 & 0 \\ -2h_1h_2 - 2h_2^2 & 2h_1^2 - 2h_2^2 & 0 \end{pmatrix}$$

We set $d^* := -2h_1h_2 - 2h_2^2 \in K[h_1, h_2]$ and see $d^* \notin \mathcal{I}$.

 $\Rightarrow V$ is controlled and conditioned invariant for the given system.

Rational admissible output feedback:

$$\alpha^* = \frac{z^*}{d^*} \in \mathcal{K}(h_1,h_2)^2, \text{ where } z^* = \begin{pmatrix} h_1^2 + h_1h_2 - 4h_1 - 4h_2 \\ -2h_1h_2 - 2h_2^2 \end{pmatrix}.$$

 $\underline{\mathsf{Given:}} \;\; f \in R^n, \;\; g \in R^{n \times m}, \;\; e \in R \setminus \{0\}, \;\; h \in R^p, \;\; \mathcal{I} \subseteq R \; \mathsf{ideal}$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider: $\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$, y = h(x), $V = \mathcal{V}(\mathcal{I})$

$$\underline{\mathsf{Given:}} \;\; f \in R^n, \;\; g \in R^{n \times m}, \;\; e \in R \setminus \{0\}, \;\; h \in R^p, \;\; \mathcal{I} \subseteq R \; \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

Start: Compute the R-modules

• $\mathcal{M} = \{ F \in R^n \mid F \text{ vector field on } V \}$

$$\underline{\mathsf{Given:}} \;\; f \in R^n, \;\; g \in R^{n \times m}, \;\; e \in R \setminus \{0\}, \;\; h \in R^p, \;\; \mathcal{I} \subseteq R \; \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

- $\mathcal{M} = \{ F \in R^n \mid F \text{ vector field on } V \}$
- $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$

$$\underline{\mathsf{Given}} \colon \ f \in R^n, \ \ g \in R^{n \times m}, \ \ e \in R \setminus \{0\}, \ \ h \in R^p, \ \ \mathcal{I} \subseteq R \ \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

- $\mathcal{M} = \{ F \in \mathbb{R}^n \mid F \text{ vector field on } V \}$
- $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$
 - 1. V controlled invariant \Leftrightarrow There is $(d,z) \in \mathcal{F}$ with $ed \notin \mathcal{I}$

$$\underline{\mathsf{Given}} \colon \ f \in R^n, \ \ g \in R^{n \times m}, \ \ e \in R \setminus \{0\}, \ \ h \in R^p, \ \ \mathcal{I} \subseteq R \ \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

- $\mathcal{M} = \{ F \in \mathbb{R}^n \mid F \text{ vector field on } V \}$
- $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$
 - 1. V controlled invariant \Leftrightarrow There is $(d, z) \in \mathcal{F}$ with $ed \notin \mathcal{I}$
 - 2. V controlled and conditioned invariant
 - \Leftrightarrow There is $(d,z) \in \mathcal{F} \cap K[\underline{h}]^{1+m}$ with $ed \notin \mathcal{I}$

$$\underline{\mathsf{Given}} \colon \ f \in R^n, \ \ g \in R^{n \times m}, \ \ e \in R \setminus \{0\}, \ \ h \in R^p, \ \ \mathcal{I} \subseteq R \ \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

- $\mathcal{M} = \{ F \in R^n \mid F \text{ vector field on } V \}$
- $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$
 - **1.** V controlled invariant \Leftrightarrow There is $(d,z) \in \mathcal{F}$ with $ed \notin \mathcal{I} \checkmark$
 - 2. V controlled and conditioned invariant

$$\Leftrightarrow$$
 There is $(d,z) \in \mathcal{F} \cap K[\underline{h}]^{1+m}$ with $ed \notin \mathcal{I} \checkmark$

$$\underline{\mathsf{Given}} \colon \ f \in R^n, \ \ g \in R^{n \times m}, \ \ e \in R \setminus \{0\}, \ \ h \in R^p, \ \ \mathcal{I} \subseteq R \ \mathsf{ideal}$$

Assumption: $\mathcal{J}(\mathcal{V}(\mathcal{I})) = \mathcal{I}$ is prime

Consider:
$$\dot{x} = (\frac{1}{e} \cdot f)(x) + g(x)u$$
, $y = h(x)$, $V = V(\mathcal{I})$

Start: Compute the R-modules

- $\mathcal{M} = \{ F \in \mathbb{R}^n \mid F \text{ vector field on } V \}$
- $\mathcal{F} = \{(d, z) \in R^{1+m} \mid fd + egz \in \mathcal{M}\}$
 - **1.** V controlled invariant \Leftrightarrow There is $(d,z) \in \mathcal{F}$ with $ed \notin \mathcal{I} \checkmark$
 - 2. V controlled and conditioned invariant

$$\Leftrightarrow$$
 There is $(d,z) \in \mathcal{F} \cap K[\underline{h}]^{1+m}$ with $ed \notin \mathcal{I} \checkmark$

Thank you!