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Overview

- Invariant varieties for autonomous systems

- Controlled invariant varieties

- for rational control systems
- with rational state feedback (polynomial case — Paper MTNS '14)

- Controlled and conditioned invariant varieties
- for rational control systems with polynomial output
- with rational output feedback

Motivation: Generalize concept of “controlled and conditioned
invariant subspaces for linear control systems”
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Notations

- k,mnpeN

- Ke {R,C}

- R=K]x,...,xn| polynomial ring

- Q= {5 | p,q € R,q # 0} quotient field

-IZ={(p1,...,pk) ideal of R

-V=VZ)={xe K" | pi(x)=0fori=1,...,k} C K" variety
- J(V)={pe R | p(x) =0 forall x € V} vanishing ideal

Assumption:  J(V(Z)) =1

For h € RP:
- K[h] := Kl[h1, ..., hp] C R subalgebra
- K(h) := K(hy,...,hp) C Q subfield
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Let U C K" be open, xg € U and F € C}(U,K™). Consider
x(t) = F(x(t)),  x(0) = xo. (1)

Theorem (Global existence and uniqueness)

For all xg € U there is a unique solution
¢(-, x0) € C'(J(x0), V)

of (1), where 0 € J(xo) C R is the maximal interval of existence.

Definition
We call V =V(Z) invariant for Fif UNV # () and

xeUNV=p(t,x) e UNV forall t € J(x).

In this case: F vector field on V.
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Module of polynomial vector fields on V(7)
Given: Z = (p1,...,pk) an ideal of R ideal satisfying

V=V(I)#0 and J(V())=1.
FER" = FeCYU KM forU=K" = UNV=V#0

M :={F € R" | F vector field on V(Z)} C R"

is an R-module (computable with Grobner bases) v/

Theorem
The following statements are equivalent:

1. V =YV(Z) is invariant for F € R".
2. 27:1 8,'pj -Fi e j(V(I)) =T forallj=1,... k.
3. FeM.
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Rational vector fields on V(Z)
Let d € R\ {0} and F € R", consider x = % - F.

Then L. F e Cl(U,K") for U= K"\ V(d). Since J(V(T)) = T:

0£UNV=(K"\V(d)NVI) & d¢T.

Theorem

1. Ifd ¢ T and F € M, then V() is invariant for L - F.

2. IfV(Z) is invariant for L - F, then d ¢ T and

> 0ipi- Fie J(V\V(d)) forall j=1,... k
i=1
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Rational vector fields on V =V(7)

Corollary
Consider T C R a prime ideal satisfying J(V(I)) = T.

Ifd € R\ {0} and F € R", the following statements are equivalent:

1. V(Z) is invariant for x = 1 . F.

2. FeMandd¢T.
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Controlled invariant varieties

Consider a rational control system:

x(t) = f(x(t)) + g(x(t))u(t) (2)
x(t) state at time t f € Q" autonomous part
g € Q™™ control matrix u input function
n number of states m number of inputs
: ut)
Idea: O i = f(@) + g(a)u

Use state feedback to
make V invariant for (2)

state feedback

Definition
We call a variety V controlled invariant for (2) if there is a state
feedback u(t) = a(x(t)) such that the closed loop F :=f + gais

a vector field on V.
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Remark

Rational control system:

x(t) = f(x(t)) + g(x(t))u(t), where fe Q", g Q@™™. (2)

1. Since f € Q", thereis e € R\ {0} and f € R" with f:%-f.

Rn><m

2. We have img(g-) = imq(g-) for some matrix g €

Thus, for rational state feedbacks u(t) = a(x(t)), where a € Q",
we may assume w.l.0.g. that (2) takes the form

#(8) = (= - )(x(8) + gx(8) u(o)

e

where f € R", e € R\ {0}, g € R™™.

10
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Rational state feedback

Assumption: Z is a prime ideal (resp. V(Z) is irreducible).
Corollary
Let d € R\ {0} and F € R". TFAE:

1. V(Z) is invariant for x = L - F.

2. FeMandd ¢ 1.

Controlled invariance: Let o = Z with z € R™ and d € R\ {0}:

fd + e
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1 1
- + g« - +g 4 od Q
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Example: Rational state feedback

Let R =R[w,x,y], Z = (p1,p2) with pr =xy —w, pp =xw — y.
Consider V = V(Z) and the polynomial control system

-y 0 w
x(t) = (x ) + <w 0 ) u=Fx)+glu. (3)
y =X

R-module M = img(M) of vector fields on V:

0 0 0 0 x°—-1 xy—w xw—y
0 0 0

M=y w xw w
0 0

w y w xw 0

We have f ¢ M +img(g).
= V not controlled invariant with polynomial state feedback.
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Then d =2y ¢ 7.

= V controlled invariant with rational state feedback.

Rational state feedback making V invariant:

_E 2 - 2 —w
a—dEQ,wherez—<2W >
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Controlled and conditioned invariant varieties

Rational control system with polynomial output:

>'<(t):(é-f)(X(t)Hg(X(t))U(t), y(t) = h(x(t))  (4)

y(t) output at time t, h € RP output function, p number of outputs

Idee: u(t) i = f(z)+g@u | y¥()
O——
Use output feedback to y = h(z)
make V invariant for (4) L
output feedback
u(t) = By(t)) y(t)
Definition

We call a variety V' controlled and conditioned invariant for
(4) if there is an output feedback u(t) = 5(y(t)) such that the
closed loop system f + g - 3(h) is a vector field on V.
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Controlled and conditioned invariance:

1
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Example: Rational output feedback

For R = K[w, x, y] consider the control system

x(t) = f(x(t)) + g(x(2)u(t), y(t) = h(x(t)),
defined by

Y 0 w Xy + xw + yw
f=lx1],g=|-w 0 7h—<y y>.
Xyw
w y —X

Furthermore, let V = V(Z), where Z = (xy — w,xw — y).
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Example: Rational output feedback

For R = K[w, x, y] consider the control system

x(t) = f(x(t)) + g(x(2)u(t), y(t) = h(x(t)),
defined by

-y 0 w
(@) (3 D) )
Xyw
w y —x
Furthermore, let V = V(Z), where Z = (xy — w,xw — y).
Already computed: F = {(d, z) | fd + gz € M} = img(L), where
2y 2xw 2w 2w? 0 0 0 )

L=|2-w 2—w 2x—y 2y—yw y>—w? 0 0
2w 2w 2y 2yw 0 Xy —w Xw-—y
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Example: Rational output feedback

hi =xy +xw +yw, hy =xyw
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Example: Rational output feedback

hi =xy +xw +yw, hy =xyw

Compute F* = FN K[hy, ho]® = imk(p,, hy (L), where

—2h1hy — 2h3 2h2 — 2h2 *
L= +hhy—4h —4hy h3 —h? —4hy —4hy 0
—2h hy — 2h2 2h3 — 2h3 0

We set d* := —2hyhy — 2h3 € K[h1, ho] and see d* ¢ T.

= V is controlled and conditioned invariant for the given system.

Rational admissible output feedback:

Z*

o = = € K(hy, h2)?, where z* = <

d* —2hy hy — 2h2

h? + hihy — 4hy — 4h2)
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Summary
Given: feR", ge R™™ ec R\{0}, he RP, Z C R ideal
Assumption: J(V(Z)) =T is prime

Consider: x = (L - f)(x) +g(x)u, y = h(x), V =V(T)
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Summary
Given: feR", g€ R™™ ecR\{0}, he RP, TC R ideal
Assumption: J(V(Z)) =T is prime
Consider: x = (L - f)(x) +g(x)u, y = h(x), V =V(T)

Start: Compute the R-modules
e M ={F € R" | F vector field on V}

o F={(d,z) € RM™ | fd + egz € M}

1. V controlled invariant < There is (d,z) € F with ed ¢ 7 v

2. V controlled and conditioned invariant
& Thereis (d,z) € FNK[A*™ with ed ¢ T v

Thank you!
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