Introduction
Semi-invariants and some of their properties
Poincaré-Dulac Normal Forms
Generalization to invariant ideals
Application to polynomial vector fields

Local invariant sets of analytic vector fields

Niclas Kruff RWTH Aachen University

August 3, 2016

Table of contents

- Introduction
- 2 Semi-invariants and some of their properties
- 3 Poincaré-Dulac Normal Forms
- Generalization to invariant ideals
- 5 Application to polynomial vector fields

Introduction Semi-invariants and some of their properties

invariants and some of their properties Poincaré-Dulac Normal Forms Generalization to invariant ideals Application to polynomial vector fields

Invariant sets

Introduction

Autonomous differential equations

Consider the autonomous ordinary differential equation

$$\dot{\mathbf{x}} = f(\mathbf{x}), \ t \in \mathbb{R},$$

on an open subset $U \subseteq \mathbb{K}^n$, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Furthermore let $0 \in U$ be a stationary point of f.

Application to polynomial vector fields

Autonomous differential equations

Consider the autonomous ordinary differential equation

$$\dot{\mathbf{x}} = f(\mathbf{x}), \ t \in \mathbb{R},$$

on an open subset $U \subseteq \mathbb{K}^n$, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Furthermore let $0 \in U$ be a stationary point of f.

Components of vector field $f = (f_1, \dots, f_n)$:

- i) $\mathbb{K}[\mathbf{x}]^n$, $\mathbb{K}[\mathbf{x}]$ the polynomial ring over \mathbb{K} .
- ii) $\mathbb{K}\{\mathbf{x}\}^n$, $\mathbb{K}\{\mathbf{x}\}$ the ring of convergent power series over \mathbb{K} .

Later on, we will also need formal power series.

In the following:

$$\mathcal{R} \in \{\mathbb{K}[\mathbf{x}], \mathbb{K}[[\mathbf{x}]], \mathbb{K}\{\mathbf{x}\}\}.$$

Generalization to invariant ideals

Application to polynomial vector fields

Invariant sets

Definition

A subset $V \subseteq U$ is called an invariant set for

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

if for every $x_0 \in V$ the whole trajectory through x_0 is a subset of V.

Application to polynomial vector fields

Invariant sets

Definition

A subset $V \subseteq U$ is called an invariant set for

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

if for every $x_0 \in V$ the whole trajectory through x_0 is a subset of V.

Invariant sets are useful for qualitative analysis, and special solutions of a differential equation.

Invariant sets: Example

Consider the differential equation

$$\dot{x} = -y + x(1 - x^2 - y^2)$$
$$\dot{y} = x + y(1 - x^2 - y^2).$$

The set

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

is invariant for this equation.

Invariant sets: Example

Consider the differential equation

$$\dot{x} = -y + x(1 - x^2 - y^2)$$
$$\dot{y} = x + y(1 - x^2 - y^2).$$

The set

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

is invariant for this equation.

Restriction of differential equation to *C* yields:

$$\dot{x} = -y$$
 $\dot{v} = x$

Introduction
Semi-invariants and some of their properties
Poincaré-Dulac Normal Forms
Generalization to invariant ideals
Application to polynomial vector fields

Important operators Semi-invariants

Semi-invariants and some of their properties

The Lie derivative

Let $f \in \mathbb{R}^n$. The map:

$$L_f: \mathcal{R} \longrightarrow \mathcal{R}, \ \psi \mapsto L_f(\psi) := D(\psi)(\mathbf{x}) \cdot f(\mathbf{x}),$$

is called Lie derivative along f.

Lie derivative plays an important role in study of invariant sets.

The Lie derivative

Let $f \in \mathbb{R}^n$. The map:

$$L_f: \mathcal{R} \longrightarrow \mathcal{R}, \ \psi \mapsto L_f(\psi) := D(\psi)(\mathbf{x}) \cdot f(\mathbf{x}),$$

is called Lie derivative along f.

Lie derivative plays an important role in study of invariant sets. Properties:

- i) L_f is linear.
- ii) Product rule:

$$L_f(\psi_1\psi_2) = \psi_1 L_f(\psi_2) + \psi_2 L_f(\psi_1).$$

Lie brackets

The \mathbb{K} -vector space \mathcal{R}^n becomes a Lie algebra with the following map:

$$[\cdot,\cdot]:\mathcal{R}^n\times\mathcal{R}^n\longrightarrow\mathcal{R}^n,\;(f,g)\mapsto[f,g]:=Dg\cdot f-Df\cdot g.$$

Lie brackets

The \mathbb{K} -vector space \mathcal{R}^n becomes a Lie algebra with the following map:

$$[\cdot,\cdot]:\mathcal{R}^n\times\mathcal{R}^n\longrightarrow\mathcal{R}^n,\;(f,g)\mapsto[f,g]:=Dg\cdot f-Df\cdot g.$$

Useful property:

Let $f, g \in \mathbb{R}^n$.

If $\phi \in \mathcal{R}$ one has

$$L_f(L_g(\phi)) - L_g(L_f(\phi)) = L_{[f,g]}(\phi).$$

Semi-invariants and invariant sets

Definition

Let $\phi \in \mathcal{R}$. If there exists $\lambda \in \mathcal{R}$ such that

$$L_f(\phi) = \lambda \cdot \phi$$

holds, then ϕ is called a semi-invariant of f.

Semi-invariants and invariant sets

Definition

Let $\phi \in \mathcal{R}$. If there exists $\lambda \in \mathcal{R}$ such that

$$L_f(\phi) = \lambda \cdot \phi$$

holds, then ϕ is called a semi-invariant of f.

Consequently, ϕ is a semi-invariant iff

$$L_f(\langle \phi \rangle) \subseteq \langle \phi \rangle,$$

for ideal generated by ϕ . Semi-invariants are useful on the study of invariant sets.

Semi-invariants and invariant sets

Lemma

Let $\mathcal{R}=\mathbb{K}[\mathbf{x}]$ or $\mathcal{R}=\mathbb{K}\{\mathbf{x}\}$ and ϕ be a semi-invariant of f. Then, the set

$$\mathcal{V}(\phi) := \{ x \in U \mid \phi(x) = 0 \}$$

is an invariant set of f.

Previous example

Check invariance for $C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

Example

$$\dot{x} = -y + x(1 - x^2 - y^2)$$
$$\dot{y} = x + y(1 - x^2 - y^2),$$

Let
$$\phi := x^2 + y^2 - 1$$
. Then

$$L_f(\phi) = -(2x^2 + 2y^2)\phi.$$

Introduction
Semi-invariants and some of their properties
Poincaré-Dulac Normal Forms
Generalization to invariant ideals
Application to polynomial vector fields

Normal Forms and semi-invariants

Poincaré-Dulac Normal Forms

Consider the Taylor expansion of an analytic vector field f, f(0) = 0;

$$f(\mathbf{x}) = B\mathbf{x} + \sum_{j=2}^{\infty} f^{(j)}(\mathbf{x}),$$

where $B := D_f(0)$ and $f^{(j)}$ is a homogeneous vector field of degree j.

Consider the Taylor expansion of an analytic vector field f, f(0) = 0;

$$f(\mathbf{x}) = B\mathbf{x} + \sum_{j=2}^{\infty} f^{(j)}(\mathbf{x}),$$

where $B := D_f(0)$ and $f^{(j)}$ is a homogeneous vector field of degree j.

Moreover, decompose
$$B = \underbrace{B_s}_{\text{semi-simple}} + \underbrace{B_n}_{\text{nilpotent}}$$
.

Example: For Jordan canonical basis

 $\longrightarrow B_s$ diagonal, B_n strict upper triangular matrix.

Definition

f is in Poincaré-Dulac Normal Form (PDNF) if $[B_s, f] = Df(\mathbf{x}) \cdot B_s \mathbf{x} - B_s f(\mathbf{x}) = 0$ holds.

Definition

f is in Poincaré-Dulac Normal Form (PDNF) if $[B_s, f] = Df(\mathbf{x}) \cdot B_s \mathbf{x} - B_s f(\mathbf{x}) = 0$ holds.

The following decomposition will be used later:

$$f(\mathbf{x}) = B_s \mathbf{x} + \underbrace{B_n \mathbf{x} + \sum_{j=2}^{\infty} f^{(j)}(\mathbf{x})}_{=:g}$$

Theorem[H. Poincaré and H. Dulac]

There always exists an invertible formal power series h, which is solution preserving from $\dot{\mathbf{x}} = f(\mathbf{x})$ to $\dot{\mathbf{x}} = \widetilde{f}(\mathbf{x})$, where \widetilde{f} is in PDNF.

Structure of Normal Form depends on the eigenvalues of *B*.

Theorem[H. Poincaré and H. Dulac]

There always exists an invertible formal power series h, which is solution preserving from $\dot{\mathbf{x}} = f(\mathbf{x})$ to $\dot{\mathbf{x}} = \widetilde{f}(\mathbf{x})$, where \widetilde{f} is in PDNF.

Structure of Normal Form depends on the eigenvalues of B.

Example[Dimension n = 2]

Let $B_s = diag(\lambda_1, \lambda_2)$ and assume that λ_1, λ_2 are linearly independent over \mathbb{Q} .

Theorem[H. Poincaré and H. Dulac]

There always exists an invertible formal power series h, which is solution preserving from $\dot{\mathbf{x}} = f(\mathbf{x})$ to $\dot{\mathbf{x}} = \widetilde{f}(\mathbf{x})$, where \widetilde{f} is in PDNF.

Structure of Normal Form depends on the eigenvalues of B.

Example[Dimension n = 2]

Let $B_s = diag(\lambda_1, \lambda_2)$ and assume that λ_1, λ_2 are linearly independent over \mathbb{Q} .

Then

 $f = B_s \mathbf{x}$, i.e. Normal Form is very simple.

Example[Dimension n = 2]

Let $B_s = diag(\lambda_1, \lambda_2)$ and $\lambda_1 = -\lambda_2 = 1$. Then

$$\widetilde{f} = B_s \mathbf{x} + \sum_{j \ge 1} \gamma^j (\sigma_j \mathbf{x} + \tau_j B_s \mathbf{x}),$$

where $\gamma := x_1 x_2$ and $\sigma_j, \tau_j \in \mathbb{K}$.

Finding semi-invariants

Theorem[S. Walcher, 2002]

Let f be in PDNF and $\phi \in \mathbb{C}[[\mathbf{x}]]$ be L_f -invariant. Then, there exists an invertible formal power series β such that $\beta \phi$ is L_{B_s} -invariant.

Finding semi-invariants

Theorem[S. Walcher, 2002]

Let f be in PDNF and $\phi \in \mathbb{C}[[\mathbf{x}]]$ be L_f -invariant. Then, there exists an invertible formal power series β such that $\beta \phi$ is L_{B_s} -invariant.

Example[Dimension n = 2]

Let $B_s = diag(\lambda_1, \lambda_2)$.

- i) If λ_1, λ_2 are linearly independent over $\mathbb Q$ then the only irreducible semi-invariants (up to multiplication with invertible power series) are x_1, x_2 .
- ii) If $\lambda_1 = -\lambda_2 = 1$ then the only irreducible semi-invariants (up to multiplication with invertible power series) are x_1, x_2 .

Operation of B_s on monomials

Let $B_s = diag(\lambda_1, \dots, \lambda_n)$ and $m := x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ be a monomial.

Operation of B_s on monomials

Let $B_s = diag(\lambda_1, \dots, \lambda_n)$ and $m := x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ be a monomial.

$$L_{B_s}(m) = \left(\sum_{j=1}^n \alpha_j \lambda_j\right) \cdot m := w(m) \cdot m.$$

Consequently, each monomial lies in the eigenspace of L_{B_s} .

Operation of B_s on monomials

Let $B_s = diag(\lambda_1, \dots, \lambda_n)$ and $m := x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ be a monomial.

$$L_{B_s}(m) = \left(\sum_{j=1}^n \alpha_j \lambda_j\right) \cdot m := w(m) \cdot m.$$

Consequently, each monomial lies in the eigenspace of L_{B_s} . For $\phi \in \mathcal{R}$ define $W(\phi) \subseteq \mathbb{C}$ to be the set of all weights which occur in the monomial representation of ϕ .

Generalization of semi-invariants

Definition

Let $I \subseteq \mathcal{R}$ be an ideal. If $L_f(I) \subseteq I$ holds then I is called L_f -invariant.

Generalization of semi-invariants

Definition

Let $I \subseteq \mathcal{R}$ be an ideal. If $L_f(I) \subseteq I$ holds then I is called L_f -invariant.

Lemma

If I is L_f -invariant the vanishing set $\mathcal{V}(I)$ is an invariant set of f.

Example of invariant ideal

If $f \in \mathbb{K}[\mathbf{x}]^n$ is homogeneous, then

$$I_{2 imes2}:=\langle 2 imes 2 ext{ minors of } egin{bmatrix} f_1 & x_1 \ f_2 & x_2 \ dots & dots \ f_n & x_n \end{bmatrix}
angle$$
 ideal of f .

is an invariant ideal of f.

Lemma

If I is radical, i.e.

$$I=\sqrt{I}$$

and V(I) is an invariant set of $\dot{\mathbf{x}} = f(\mathbf{x})$, then I is L_f -invariant.

Lemma

If I is radical, i.e.

$$I=\sqrt{I}$$

and $\mathcal{V}(I)$ is an invariant set of $\dot{\mathbf{x}} = f(\mathbf{x})$, then I is L_f -invariant.

Example

The ideal

$$I := \langle x_1, x_2, \dots, x_n \rangle$$

is radical and $V(I) = \{0\}$ is an invariant set because 0 is a stationary point. Therefore, I is L_f -invariant.

Theorem [K., 2016]

Let f be in PDNF. If $I \subseteq \mathbb{K}[[\mathbf{x}]]$ is L_f -invariant, then I is L_{B_s} -invariant.

Why useful?

Theorem [K., 2016]

Let f be in PDNF. If $I \subseteq \mathbb{K}[[\mathbf{x}]]$ is L_f -invariant, then I is L_{B_s} -invariant.

Why useful?

The L_{B_s} -invariant ideals are easier to compute.

Structure of proof:

Take $\phi \in I$ and make use of the decomposition

$$\phi = \sum_{w \in W(\phi)} \phi_w.$$

Structure of proof:

Take $\phi \in I$ and make use of the decomposition

$$\phi = \sum_{w \in W(\phi)} \phi_w.$$

Next, use that f is in PDNF, i.e. $[B_s, f] = 0$. This implies:

$$L_f^m(\phi) := \left(\underbrace{L_f \circ \cdots \circ L_f}_{\text{m times}}\right)(\phi) = \sum_{j=0}^m \binom{m}{j} L_{B_s}^{(j)}(L_g^{(m-j)}(\phi)),$$

since L_{B_s} and L_g commute.

Structure of proof:

Take $\phi \in I$ and make use of the decomposition

$$\phi = \sum_{w \in W(\phi)} \phi_w.$$

Next, use that f is in PDNF, i.e. $[B_s, f] = 0$. This implies:

$$L_f^m(\phi) := \left(\underbrace{L_f \circ \cdots \circ L_f}_{\text{m times}}\right)(\phi) = \sum_{j=0}^m \binom{m}{j} L_{B_s}^{(j)}(L_g^{(m-j)}(\phi)),$$

since L_{B_s} and L_g commute. Approximate ϕ by its residue class $[\phi]_{\mathbb{K}[[\mathbf{x}]]/\langle \mathbf{x} \rangle^i}$, which can be represented by a polynomial. This leads to a finite dimensional linear algebra problem. Finally, keep in mind that ideals are closed sets under the \mathbf{x} -adic topology.

L_{B_s} -invariant ideals

Structure of L_{B_s} -invariant ideals?

L_{B_s} -invariant ideals

Structure of L_{B_s} -invariant ideals?

Proposition [K., 2016]

All L_{B_s} -invariant ideals can be generated by semi-invariants.

L_{B_s} -invariant ideals

Structure of L_{B_s} -invariant ideals?

Proposition [K., 2016]

All L_{B_s} -invariant ideals can be generated by semi-invariants.

Example[Dimension n = 2]

If f is in PDNF, and $B_s = diag(\lambda_1, \lambda_2)$, where λ_1, λ_2 are either linearly independent over $\mathbb Q$ or $\lambda_1 = -\lambda_2 = 1$, the only invariant prime ideals are

$$\langle x_1 \rangle, \langle x_2 \rangle, \langle x_1, x_2 \rangle.$$

Poincaré Transforms

Application to polynomial vector fields

Goal: Include behaviour "at infinity".

Goal: Include behaviour "at infinity".

Means: Poincaré Transforms.

Goal: Include behaviour "at infinity".

Means: Poincaré Transforms.

For simplicity, consider dimension two:

Let
$$\phi := \sum_{j=0}^r \phi_j \in \mathbb{K}[x,y]$$
, $\deg(\phi_j) = j$ or $\phi_j = 0$, $\phi_r \neq 0$, and let

$$\phi^{hom} := \sum_{j=0}^{r} \phi_j z^{r-j}$$

be its homogenization with respect to z.

Goal: Include behaviour "at infinity".

Means: Poincaré Transforms.

For simplicity, consider dimension two:

Let
$$\phi := \sum_{j=0}^r \phi_j \in \mathbb{K}[x,y]$$
, $\deg(\phi_j) = j$ or $\phi_j = 0$, $\phi_r \neq 0$, and let

$$\phi^{hom} := \sum\limits_{j=0}^r \phi_j \mathbf{z}^{r-j}$$

be its homogenization with respect to z.

Substituting x=1 leads to a Poincaré Transform of ϕ with respect

to the vector
$$e_1 := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
:

$$\phi^* := \phi_{e_1}^* = \sum_{j=0}^r \phi_j(1, y) z^{r-j}.$$

Computing Poincaré Transforms of a vector field

Let
$$f := \sum_{j=0}^{m} f^{(j)}$$
, $f^{(j)}$ homogeneous of degree j or zero and $deg(f) = m$.

There is a machinery to compute a Poincaré Transform of f with respect to e_1 which uses homogenization and projection.

Computing Poincaré Transforms of a vector field

Let
$$f := \sum_{j=0}^{m} f^{(j)}$$
, $f^{(j)}$ homogeneous of degree j or zero and $deg(f) = m$.

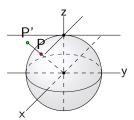
There is a machinery to compute a Poincaré Transform of f with respect to e_1 which uses homogenization and projection.

This leads to a vector field $f^* := f_{e_1}^* \in \mathbb{K}[y, z]^2$.

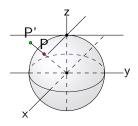
Poincaré sphere → projective plane:

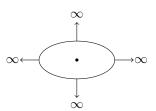
Geometric motivation/interpretation.

Poincaré sphere — projective plane:



Poincaré sphere → projective plane:





Polynomials:

i)
$$\phi^*(0) = 0$$
 iff $\phi_r(e_1) = 0$.

Polynomials:

- i) $\phi^*(0) = 0$ iff $\phi_r(e_1) = 0$.
- ii) If ϕ is irreducible and $\phi_r(e_1)=0$, then ϕ^* is irreducible.

Polynomials:

- i) $\phi^*(0) = 0$ iff $\phi_r(e_1) = 0$.
- ii) If ϕ is irreducible and $\phi_r(e_1) = 0$, then ϕ^* is irreducible.

Vector Fields:

i) One has
$$f_{e_1}^*(0)=0$$
 iff $f_{e_1}^{(m)}(v)\in\mathbb{C}v$.

Polynomials:

- i) $\phi^*(0) = 0$ iff $\phi_r(e_1) = 0$.
- ii) If ϕ is irreducible and $\phi_r(e_1) = 0$, then ϕ^* is irreducible.

Vector Fields:

- i) One has $f_{e_1}^*(0)=0$ iff $f_{e_1}^{(m)}(v)\in\mathbb{C}v$.
- ii) In case that ϕ is L_f -invariant, one gets L_{f^*} -invariance of ϕ^* .

Definition

If $v \in \mathbb{C}^2 \setminus \{0\}$ fulfills $f^{(m)}(v) \in \mathbb{C}v$ one calls v a stationary point at infinity.

Definition

If $v \in \mathbb{C}^2 \setminus \{0\}$ fulfills $f^{(m)}(v) \in \mathbb{C}v$ one calls v a stationary point at infinity.

For dimension n = 2, a stationary point at infinity v is called nondegenerate, if not both eigenvalues of $Df_v^*(0)$ are equal to zero.

Definition

If $v \in \mathbb{C}^2 \setminus \{0\}$ fulfills $f^{(m)}(v) \in \mathbb{C}v$ one calls v a stationary point at infinity.

For dimension n = 2, a stationary point at infinity v is called nondegenerate, if not both eigenvalues of $Df_v^*(0)$ are equal to zero.

Theorem[S. Walcher, 2000]

Assume that all stationary points at infinity of $\dot{x}=f(x)$ are nondegenerate, and none of them is a rational node (i.e. $\frac{\lambda_2}{\lambda_1}\notin\mathbb{Q}_{>0}$). In case that ϕ is a irreducible semi-invariant of f, its total degree is at most m+1.

A stationary point at infinity v is called generic if the eigenvalues of $Df_v^*(0)$ are linearly independent over \mathbb{Q} . Generalization of Theorem:

Theorem[K., 2016]

Assume that all stationary points at infinity of $\dot{x}=f(x)$ are generic. Assume further, that ϕ_1,\ldots,ϕ_{n-1} are different irreducible semi-invariants of f, where all terms of highest degree are relatively prime. Then, the product of their total degrees is at most $\frac{m^n-1}{m-1}$.

A stationary point at infinity v is called generic if the eigenvalues of $Df_v^*(0)$ are linearly independent over \mathbb{Q} . Generalization of Theorem:

Theorem[K., 2016]

Assume that all stationary points at infinity of $\dot{x}=f(x)$ are generic. Assume further, that ϕ_1,\ldots,ϕ_{n-1} are different irreducible semi-invariants of f, where all terms of highest degree are relatively prime. Then, the product of their total degrees is at most $\frac{m^n-1}{m-1}$.

Compare to dimension n = 2

A stationary point at infinity v is called generic if the eigenvalues of $Df_v^*(0)$ are linearly independent over \mathbb{Q} . Generalization of Theorem:

Theorem[K., 2016]

Assume that all stationary points at infinity of $\dot{x}=f(x)$ are generic. Assume further, that ϕ_1,\ldots,ϕ_{n-1} are different irreducible semi-invariants of f, where all terms of highest degree are relatively prime. Then, the product of their total degrees is at most $\frac{m^n-1}{m-1}$.

Compare to dimension
$$n=2 \longrightarrow \deg(\phi) \le m+1 = \frac{m^2-1}{m-1}$$
.

A small example

Special Lotka-Volterra-system (J. Chavarriga, H. Giacomini, M. Grau, 2005))

$$\dot{x} = x(ax + by + 1)$$
$$\dot{y} = y(x + y),$$

where 0 < a < 1 and b > 1.

Compute all stationary points at infinity:

A small example

Special Lotka-Volterra-system (J. Chavarriga, H. Giacomini, M. Grau, 2005))

$$\dot{x} = x(ax + by + 1)$$
$$\dot{y} = y(x + y),$$

where 0 < a < 1 and b > 1.

Compute all stationary points at infinity:

One has
$$m = 2$$
 and $f^{(m)} = \begin{pmatrix} x(ax + by) \\ y(x + y) \end{pmatrix}$.

A small example

Special Lotka-Volterra-system (J. Chavarriga, H. Giacomini, M. Grau, 2005))

$$\dot{x} = x(ax + by + 1)$$
$$\dot{y} = y(x + y),$$

where 0 < a < 1 and b > 1.

Compute all stationary points at infinity:

One has
$$m = 2$$
 and $f^{(m)} = \begin{pmatrix} x(ax + by) \\ y(x + y) \end{pmatrix}$.

Computing $det(f^{(m)}, \mathbf{x})$ yields 3 stationary points at infinity:

$$v_1 := \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ v_2 := \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ v_3 := \begin{bmatrix} 1-b \\ a-1 \end{bmatrix}.$$

A small Example

Special Lotka-Volterra-system

All stationary points at infinity are nondegenerate in case that

$$\frac{a-b}{(a-1)\cdot (b-1)}$$

is irrational. Applying our previous results yields

$$\deg(\phi) \le m + 1 = 3$$

if ϕ is a possible irreducible semi-invariant.

A small Example

Special Lotka-Volterra-system

All stationary points at infinity are nondegenerate in case that

$$\frac{a-b}{(a-1)\cdot (b-1)}$$

is irrational. Applying our previous results yields

$$\deg(\phi) \le m + 1 = 3$$

if ϕ is a possible irreducible semi-invariant.

Solving the corresponding linear system of equations gives the only irreducible semi-invariants

$$x, y$$
.

Introduction
Semi-invariants and some of their properties
Poincaré-Dulac Normal Forms
Generalization to invariant ideals
Application to polynomial vector fields

The end

Thank you for your attention