P4 and desingularization of vector fields in the plane

P. De Maesschalck

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- P4 = Planar Polynomial Phase Portraits
- ▶ implemented by C Herssens, J C Artes, J Llibre, F Dumortier
- originally worked for unix with reduce
- Program ported to Qt (windows/unix/mac) with maple by PDM
- ▶ P5 = Piecewise P4

Workings of P4 is based on the book Qualitative Theory of Planar Differential Systems by Dumortier, LLibre and Artes.

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

Goal: qualitative study of dynamics, disregarding time-related features. This means looking at the phase portrait Theoretics:

- Poincare-Bendixson, so no chaos
- finite number of singular points when reduced
- study at infinity possible
- singular points have a finite number of sectors (parabolic, hyperbolic, elliptic)
- Separatrix skeleton can be drawn (problem of homoclinic and heteroclinic connections)
- Limit cycles may or may not be present

More than any phase portrait drawing program that one can easily find online!

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

Step 1: Eliminating GCF

This is done using Maple. In the sequel we will assume the GCF has been eliminated.

Step 2: Finding the isolated singular points. Some of them are evaluated algebraically some numerically, but all computations are done with real roots.

Step 3: behaviour at infinity Consider $S^2 = \{X^2 + Y^2 + Z^2 = 1\}$, and define $\Delta(x, y) = \sqrt{1 + x^2 + y^2}$,

$$f^{\pm}(x,y) = \pm \left(rac{x}{\Delta},rac{y}{\Delta},rac{1}{\Delta}
ight) = (X,Y,Z)$$

$$\implies$$
 vf is defined on S^2 outside equator

How to extend to the equator? Consider three charts

$$\phi_1(X, Y, Z) = \left(\frac{Y}{X}, \frac{Z}{X}\right) = (u, v)$$

$$\phi_2(X, Y, Z) = \left(\frac{X}{Y}, \frac{Z}{Y}\right)$$

$$\phi_3(X, Y, Z) = \left(\frac{X}{Z}, \frac{Y}{Z}\right) = (x, y)$$

Then define the vector field using the relation

$$(u, v) = (\phi_1 \circ \phi_3^{-1})(x, y)$$

= $(y/x, 1/x)$

・ロト・日本・モト・モート ヨー うへで

The equator $\{v = 0\}$ corresponds to infinity in the U_3 chart.

$$(u, v) = (\phi_1 \circ \phi_3^{-1})(x, y) = (y/x, 1/x) \implies (x, y) = (1/v, u/v)$$

Chart U_2 :

$$(u,v) = (\phi_2 \circ \phi_3^{-1})(x,y) = (x/y, 1/y) \implies (x,y) = (u/v, 1/v)$$

They can be joint by 1 formula:

$$(x,y) = \left(\frac{\cos\theta}{v}, \frac{\sin\theta}{v}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Chart U_1 :

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

goes to

$$\begin{cases} \dot{u} = -uP(1/v, u/v) + Q(1/v, u/v) \\ \dot{v} = -vP(1/v, u/v) \end{cases}$$

and after multiplication to

$$\begin{cases} \dot{u} = v^{d} \left(-uP(1/v, u/v) + Q(1/v, u/v) \right) \\ \dot{v} = -v^{d+1}P(1/v, u/v) \end{cases}$$

where *d* is the degree of the polynomials *P*, *Q*. The result is again a polynomial vector field. At $\{v = 0\}$:

$$\begin{cases} \dot{u} = -uP_d(1, u) + Q_d(1, u) \\ \dot{v} = 0 \end{cases}$$

Equator is invariant with a well-defined dynamics on it!

くして 「「」 (山下) (山下) (山下) (山下)

P4 shows a view of the sphere from the top:

Poincaré compactification:

$$(x,y) = \left(\frac{\cos\theta}{v}, \frac{\sin\theta}{v}\right)$$

Poincaré-Lyapunov compactification:

$$(x,y) = \left(\frac{\cos\theta}{v^{\alpha}}, \frac{\sin\theta}{v^{\beta}}\right)$$

Same idea buth with weights (α, β) (and with a bit more complicated inverted formula)

Step 4: Local study of singular points

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

Suppose

$$P(x_0, y_0) = Q(x_0, y_0) = 0.$$

Define the jacobian

$$M = \begin{pmatrix} \frac{\partial P}{\partial x}(x_0, y_0) & \frac{\partial P}{\partial y}(x_0, y_0) \\ \frac{\partial Q}{\partial x}(x_0, y_0) & \frac{\partial Q}{\partial y}(x_0, y_0) \end{pmatrix}$$

and consider the linearized equation

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = M \left(\begin{array}{c} x - x_0 \\ y - y_0 \end{array}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Several cases:

- 1. Saddle (eigenvalues λ, μ opposite sign)
- 2. Node (eigenvalues λ, μ same sign and nonzero)
- 3. Focus (eigenvalues $\alpha \pm i\beta$, $\alpha \neq 0$, $\beta \neq 0$)
- 4. Center (eigenvalues $\pm i\beta$, $\beta \neq 0$)
- 5. Semi-elementary (eigenvalues λ , 0 with $\lambda \neq 0$)
- 6. nilpotent or degenerate (eigenvalues 0,0)

For case 1: we compute invariant manifolds tangent to eigenspace of λ resp. $\mu.$

For cases 4,5,6 we need information from the nonlinear part to determine the type further

Case 4: Lyapunov constants (see talk of Joan Torregrosa). P4 uses a method of Gasull & Torregrosa

Case 5: there exists a smooth 1-dim center manifold which is a graph y = h(x) or x = k(y). Reduction of the dynamics to the center manifold leads to determination of type.

Case 6: desingularization

Consider a singular point at the origin (0,0). We use

$$(x, y) = (r \cos \theta, r \sin \theta) = (r\overline{x}, r\overline{y}).$$

and use (r, θ) as new coordinates. Near $\theta = 0$ we use $\sin \theta \approx \theta$ and $\cos \theta \approx 0$, so

$$(x,y)=(r,r\theta)$$

Better:

$$(x,y) = (r,r\overline{y})$$
 "chart $\overline{x} = 1$ "

Near $heta=\pi/2$ we have $\sin heta pprox 1$ and $\cos heta pprox heta -\pi/2$, so

$$(x,y) = (r(\theta - \pi/2), r)$$

Better:

$$(x,y) = (r\overline{x},r)$$
 "chart $\overline{y} = 1$ "

Instead of using (r, θ) we use the charts.

Example:

$$\begin{cases} \dot{x} = x^2 - 2xy \\ \dot{y} = y^2 - xy \end{cases}$$

Leads to

$$\begin{cases} \dot{r} = r(\cos^3\theta - 2\cos^2\theta\sin\theta + \dots) + O(r^2) \\ \dot{\theta} = \cos\theta\sin\theta(3\sin\theta - 2\cos\theta) + O(r) \end{cases}$$

Seems somewhat complicated trigonometry but is in fact not so hard

It is better to use the charts instead of (r, θ) :

$$egin{aligned} & (x,y) = (r,r\overline{y}) & \ & ext{``chart } \overline{x} = 1'' \ & & & \\ & \dot{x} &= x^2 - 2xy \ & \dot{y} &= y^2 - xy \end{aligned}$$

Leads to

$$\begin{cases} \dot{r} = r(1-2\overline{y}) \\ \dot{\overline{y}} = 3\overline{y}^2 - 2\overline{y} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 \implies polynomial character is retained. Of course to get information on the full circle we need to complement with additional charts. Sometimes more than one blow-up is necessary:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Theorem: any singular point of an analytic planar vector field can be blown up after a finite number of blowups so that on the blow-up locus only elementary or semi-elementary singular points are found

For each of these (semi)elementary points one can compute separatrices.

 \implies for any singular point there is an algorithm to divide the neighbourhood in sectors (hyperbolic, eliptic, parabolic) and to compute the type of the singular point.

P4 actually implements Quasi-homogeneous blow-up

$$(x,y) = (r^{\alpha} \cos \theta, r^{\beta} \sin \theta) = (r^{\alpha} \overline{x}, r^{\beta} \overline{y}).$$

How to choose the weights (α, β) ? Let

$$\dot{x} = P(x, y) = \sum a_{ij} x^{i} y^{j}, \dot{y} = Q(x, y) = \sum b_{ij} x^{i} y^{j}$$
$$S = \{(i - 1, j) : a_{ij} \neq 0\} \cup \{(i, j - 1) : b_{ij} \neq 0\}$$

The newton polygon is the convex hull of the set

$$\mathcal{P} = \cup_{(r,s)\in S} \{ (r',s') \colon r' \geq r, s' \geq s \}.$$

One of the borders of the Newton polygon is a straight line with equation

$$r\alpha + s\beta = m$$

・ロト・日本・モート モー うへぐ

then (α, β) is a suitable choice

Lemma: if we proceed this way, then after blowing up, the north and south poles are either nonsingular or (semi)elementary

 \implies iterated blow-ups are only necessary in the horizontal directions.

This reduces the computational work.

Conclusion: besides determining homoclinic, heteroclinic connections and limit cycles, P4 offers a full global study of planar vector fields.

P5: same thing but with piecewise polynomial systems, defined in regions by algebraic inequalities

Possible extensions to P4/P5:

- computing saddle quantities
- alternative algorithms for numerical integration
- beter sewing in P5
- period computation, computing abelian integrals, Melnikov integrals, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

report in Latex/pdf

▶ ...

alternative symbolic math programs