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I P4 = Planar Polynomial Phase Portraits

I implemented by C Herssens, J C Artes, J Llibre, F Dumortier

I originally worked for unix with reduce

I Program ported to Qt (windows/unix/mac) with maple by
PDM

I P5 = Piecewise P4

Workings of P4 is based on the book Qualitative Theory of Planar
Differential Systems by Dumortier, LLibre and Artes.





{
ẋ = P(x , y)
ẏ = Q(x , y)

Goal: qualitative study of dynamics, disregarding time-related
features. This means looking at the phase portrait
Theoretics:

I Poincare-Bendixson, so no chaos

I finite number of singular points when reduced

I study at infinity possible

I singular points have a finite number of sectors (parabolic,
hyperbolic, elliptic)

I Separatrix skeleton can be drawn (problem of homoclinic and
heteroclinic connections)

I Limit cycles may or may not be present

More than any phase portrait drawing program that one can easily
find online!





{
ẋ = P(x , y)
ẏ = Q(x , y)

Step 1: Eliminating GCF
This is done using Maple. In the sequel we will assume the GCF
has been eliminated.
Step 2: Finding the isolated singular points. Some of them are
evaluated algebraically some numerically, but all computations are
done with real roots.



Step 3: behaviour at infinity
Consider S2 = {X 2 + Y 2 + Z 2 = 1}, and define
∆(x , y) =

√
1 + x2 + y2,

f ±(x , y) = ±
(
x

∆
,
y

∆
,

1

∆

)
= (X ,Y ,Z )

=⇒ vf is defined on S2 outside equator



How to extend to the equator? Consider three charts

φ1(X ,Y ,Z ) = (
Y

X
,
Z

X
) = (u, v)

φ2(X ,Y ,Z ) = (
X

Y
,
Z

Y
)

φ3(X ,Y ,Z ) = (
X

Z
,
Y

Z
) = (x , y)

Then define the vector field using the relation

(u, v) = (φ1 ◦ φ−13 )(x , y)

= (y/x , 1/x)

The equator {v = 0} corresponds to infinity in the U3 chart.



Chart U1:

(u, v) = (φ1 ◦ φ−13 )(x , y) = (y/x , 1/x) =⇒ (x , y) = (1/v , u/v)

Chart U2:

(u, v) = (φ2 ◦ φ−13 )(x , y) = (x/y , 1/y) =⇒ (x , y) = (u/v , 1/v)

They can be joint by 1 formula:

(x , y) =

(
cos θ

v
,

sin θ

v

)



Chart U1: {
ẋ = P(x , y)
ẏ = Q(x , y)

goes to {
u̇ = −uP(1/v , u/v) + Q(1/v , u/v)
v̇ = −vP(1/v , u/v)

and after multiplication to{
u̇ = vd (−uP(1/v , u/v) + Q(1/v , u/v))
v̇ = −vd+1P(1/v , u/v)

where d is the degree of the polynomials P,Q. The result is again
a polynomial vector field. At {v = 0}:{

u̇ = −uPd(1, u) + Qd(1, u)
v̇ = 0

Equator is invariant with a well-defined dynamics on it!



P4 shows a view of the sphere from the top:



Poincaré compactification:

(x , y) =

(
cos θ

v
,

sin θ

v

)
Poincaré-Lyapunov compactification:

(x , y) =

(
cos θ

vα
,

sin θ

vβ

)
Same idea buth with weights (α, β) (and with a bit more
complicated inverted formula)



Step 4: Local study of singular points{
ẋ = P(x , y)
ẏ = Q(x , y)

Suppose
P(x0, y0) = Q(x0, y0) = 0.

Define the jacobian

M =

(
∂P
∂x (x0, y0) ∂P

∂y (x0, y0)
∂Q
∂x (x0, y0) ∂Q

∂y (x0, y0)

)

and consider the linearized equation(
ẋ
ẏ

)
= M

(
x − x0
y − y0

)



Several cases:

1. Saddle (eigenvalues λ, µ opposite sign)

2. Node (eigenvalues λ, µ same sign and nonzero)

3. Focus (eigenvalues α± iβ, α 6= 0, β 6= 0)

4. Center (eigenvalues ±iβ, β 6= 0)

5. Semi-elementary (eigenvalues λ, 0 with λ 6= 0)

6. nilpotent or degenerate (eigenvalues 0, 0)

For case 1: we compute invariant manifolds tangent to eigenspace
of λ resp. µ.
For cases 4,5,6 we need information from the nonlinear part to
determine the type further
Case 4: Lyapunov constants (see talk of Joan Torregrosa). P4 uses
a method of Gasull & Torregrosa
Case 5: there exists a smooth 1-dim center manifold which is a
graph y = h(x) or x = k(y). Reduction of the dynamics to the
center manifold leads to determination of type.
Case 6: desingularization



Consider a singular point at the origin (0, 0). We use

(x , y) = (r cos θ, r sin θ) = (rx , ry).

and use (r , θ) as new coordinates. Near θ = 0 we use sin θ ≈ θ and
cos θ ≈ 0, so

(x , y) = (r , rθ)

Better:
(x , y) = (r , ry) “chart x = 1”

Near θ = π/2 we have sin θ ≈ 1 and cos θ ≈ θ − π/2, so

(x , y) = (r(θ − π/2), r)

Better:
(x , y) = (rx , r) “chart y = 1”

Instead of using (r , θ) we use the charts.



Example: {
ẋ = x2 − 2xy
ẏ = y2 − xy

Leads to{
ṙ = r(cos3 θ − 2 cos2 θ sin θ + . . . ) + O(r2)

θ̇ = cos θ sin θ(3 sin θ − 2 cos θ) + O(r)

Seems somewhat complicated trigonometry but is in fact not so
hard



It is better to use the charts instead of (r , θ):

(x , y) = (r , ry) “chart x = 1”{
ẋ = x2 − 2xy
ẏ = y2 − xy

Leads to {
ṙ = r(1− 2y)
ẏ = 3y2 − 2y

=⇒ polynomial character is retained.
Of course to get information on the full circle we need to
complement with additional charts.



Sometimes more than one blow-up is necessary:



Theorem: any singular point of an analytic planar vector field can
be blown up after a finite number of blowups so that on the
blow-up locus only elementary or semi-elementary singular points
are found

For each of these (semi)elementary points one can compute
separatrices.
=⇒ for any singular point there is an algorithm to divide the

neighbourhood in sectors (hyperbolic, eliptic, parabolic) and to
compute the type of the singular point.



P4 actually implements Quasi-homogeneous blow-up

(x , y) = (rα cos θ, rβ sin θ) = (rαx , rβy).

How to choose the weights (α, β)?
Let

ẋ = P(x , y) =
∑

aijx
iy j , ẏ = Q(x , y) =

∑
bijx

iy j

S = {(i − 1, j) : aij 6= 0} ∪ {(i , j − 1) : bij 6= 0}

The newton polygon is the convex hull of the set

P = ∪(r ,s)∈S{(r ′, s ′) : r ′ ≥ r , s ′ ≥ s}.

One of the borders of the Newton polygon is a straight line with
equation

rα + sβ = m

then (α, β) is a suitable choice



Lemma: if we proceed this way, then after blowing up, the north
and south poles are either nonsingular or (semi)elementary
=⇒ iterated blow-ups are only necessary in the horizontal

directions.
This reduces the computational work.



Conclusion: besides determining homoclinic, heteroclinic
connections and limit cycles, P4 offers a full global study of planar
vector fields.
P5: same thing but with piecewise polynomial systems, defined in
regions by algebraic inequalities



Possible extensions to P4/P5:

I computing saddle quantities

I alternative algorithms for numerical integration

I beter sewing in P5

I period computation, computing abelian integrals, Melnikov
integrals, . . .

I report in Latex/pdf

I alternative symbolic math programs

I . . .


