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P4 = Planar Polynomial Phase Portraits
implemented by C Herssens, J C Artes, J Llibre, F Dumortier
originally worked for unix with reduce

Program ported to Qt (windows/unix/mac) with maple by
PDM

P5 = Piecewise P4

Workings of P4 is based on the book Qualitative Theory of Planar
Differential Systems by Dumortier, LLibre and Artes.
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{ x = P(x,y)
y = Qx,y)
Goal: qualitative study of dynamics, disregarding time-related

features. This means looking at the phase portrait
Theoretics:

» Poincare-Bendixson, so no chaos
» finite number of singular points when reduced
» study at infinity possible

» singular points have a finite number of sectors (parabolic,
hyperbolic, elliptic)

» Separatrix skeleton can be drawn (problem of homoclinic and
heteroclinic connections)

» Limit cycles may or may not be present

More than any phase portrait drawing program that one can easily
find online!
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{ x = P(xy)

y = Qxy)

Step 1: Eliminating GCF

This is done using Maple. In the sequel we will assume the GCF
has been eliminated.

Step 2: Finding the isolated singular points. Some of them are
evaluated algebraically some numerically, but all computations are
done with real roots.



Step 3: behaviour at infinity
Consider S%2 = {X2 + Y2 + Z2? = 1}, and define

A(x,y) =1+ x2+y2,
x y 1

fE(x,y) =+ (Z’ X Z) =(X,Y,2)

— vf is defined on S? outside equator



How to extend to the equator? Consider three charts

XY, 2) = (5. ) = (1)
HX.Y.2) = (5. 2)
55X, Y.2) = (5. 5) = ()

Then define the vector field using the relation

(u,v) = (10 031)(x.¥)
= (v/x1/x)

The equator {v = 0} corresponds to infinity in the Uz chart.



Chart Us:
(u,v) = (¢10631)(x.y) = (v/x,1/x) = (x,y) = (1/v,u/v)
Chart Us:
(u,v) = (620037 )(x,¥) = (x/y.1/y) = (x,y) = (v/v,1/v)

They can be joint by 1 formula:

- (220,22)

v "4



Chart Us:

{X = P(xy)

y = Qxy)

goes to
u = —uP(1/v,u/v)+ Q(1/v,u/v)
v = —vP(1/v,u/v)

and after multiplication to

{[l = v (—uP(1/v,u/v)+ Q(L/v,u/Vv))
v = —vItP(1/v,u/v)

where d is the degree of the polynomials P, Q. The result is again
a polynomial vector field. At {v =0}:

0 = —uPy(1,u)+ Qq(1,u)
v = 0

Equator is invariant with a well-defined dynamics on it!



P4 shows a view of the sphere from the top:
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Poincaré compactification:

o (22220)

v v

Poincaré-Lyapunov compactification:

( )= cos ﬂ
X7y - Va 9 Vﬁ

Same idea buth with weights («, 5) (and with a bit more
complicated inverted formula)



Step 4: Local study of singular points

{* = P(xy)
y = Qxy)

Suppose
P(x0,y0) = Q(x0, y0) = 0.

Define the jacobian

M — 5 (x0.0) G (%0, %0)
%(XOLVO) %(X()v)/[))

and consider the linearized equation

(5)=m (%)



Several cases:

1.

o LN

6.

Saddle (eigenvalues \, i opposite sign)

Node (eigenvalues A, 1 same sign and nonzero)
Focus (eigenvalues o + i3, a« # 0, 5 # 0)
Center (eigenvalues +i3, § # 0)
Semi-elementary (eigenvalues A, 0 with X\ # 0)

nilpotent or degenerate (eigenvalues 0, 0)

For case 1: we compute invariant manifolds tangent to eigenspace
of A resp. p.

For cases 4,5,6 we need information from the nonlinear part to
determine the type further

Case 4: Lyapunov constants (see talk of Joan Torregrosa). P4 uses
a method of Gasull & Torregrosa

Case 5: there exists a smooth 1-dim center manifold which is a
graph y = h(x) or x = k(y). Reduction of the dynamics to the
center manifold leads to determination of type.

Case 6: desingularization



Consider a singular point at the origin (0,0). We use
(x,y) = (rcosf, rsinf) = (rx, ry).

and use (r, ) as new coordinates. Near §# = 0 we use sinf ~ 6 and
cosf =~ 0, so

(x,y) = (r, r0)

Better:
(x,y)=(r,ry)  “chartx=1"

Near 6 = 7/2 we have sinf ~ 1 and cosf ~ 6 — /2, so

(x,y) = (r(0 = 7/2),r)

Better:
(x,y) =(rx,r) “charty =1"

Instead of using (r,#) we use the charts.



Example:
{ X = x°—2xy
yo= v exy
Leads to
Fo= r(cos>d —2cos?fsinf +...)+ O(r?)
{ 0 = cosfsinf(3sinf —2cosh) + O(r)

Seems somewhat complicated trigonometry but is in fact not so
hard




It is better to use the charts instead of (r, 6):
(x,y) = (r,ry) “chart x =1"

{ x = x?>—2xy
y o= ¥y -xy
Leads to
{ r= r(1-2y)

y = 3y*-2y
—> polynomial character is retained.
Of course to get information on the full circle we need to
complement with additional charts.



Sometimes more than one blow-up is necessary:
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Theorem: any singular point of an analytic planar vector field can
be blown up after a finite number of blowups so that on the
blow-up locus only elementary or semi-elementary singular points
are found

For each of these (semi)elementary points one can compute
separatrices.

= for any singular point there is an algorithm to divide the
neighbourhood in sectors (hyperbolic, eliptic, parabolic) and to
compute the type of the singular point.



P4 actually implements Quasi-homogeneous blow-up
(x,y) = (r*cos @, r’sin0) = (r°x, r’y).

How to choose the weights («, 5)?
Let

Z i y v = Z qu y
S={(i—1,j):a; A0 U{(i,j— 1) : by # 0}
The newton polygon is the convex hull of the set
P =Ugrses{(r,s): r' = r,s' > s},

One of the borders of the Newton polygon is a straight line with
equation
ra+sB=m

then (a, ) is a suitable choice



Lemma: if we proceed this way, then after blowing up, the north
and south poles are either nonsingular or (semi)elementary

— iterated blow-ups are only necessary in the horizontal
directions.

This reduces the computational work.



Conclusion: besides determining homoclinic, heteroclinic
connections and limit cycles, P4 offers a full global study of planar
vector fields.

P5: same thing but with piecewise polynomial systems, defined in
regions by algebraic inequalities



Possible extensions to P4/P5:
» computing saddle quantities
> alternative algorithms for numerical integration
> beter sewing in P5

» period computation, computing abelian integrals, Melnikov
integrals, ...

» report in Latex/pdf

> alternative symbolic math programs



