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Bistability— or more generally multistationarity—has important consequences
on the capacity of signaling pathways to process biological signals. Bistable
switches can act as memory circuits storing the information needed for later stages
of processing [19]. The response of bistable signaling pathways show hysteresis,
namely dynamic and static lags between input and output. Because of hystere-
sis, one can have in the same time sharp, all or nothing response and protection
against chatter noise. Bistability of signaling usually occurs as a result of acti-
vation of upstream signaling proteins by downstream components [2]. A differ-
ent mechanism for producing bistability in signaling pathways was proposed by
Kholodenko [14]. In this mechanism the cause of bistability are multiple phospho-
rylation/dephosphorylation cycles that share enzymes. A simple, two steps phos-
phorylation/dephosphorylation cycle is capable of ultrasensitivity, a form of all or
nothing response with no hysteresis (Goldbeter-Koshland mechanism). In multiple
phosphorylation/dephosphorylation cycles, enzyme sharing provides competitive
interactions and positive feedback that ultimately leads to bistability.

Algorithmically the task is to find the positive real solutions of a parameter-
ized system of polynomial or rational systems, since the dynamics of the network
is given by polynomial systems—arising from mass action kinetics—or rational
functions—arising in signaling networks when some some intermediates of the re-
action mechanisms are reduced. Due to the high computational complexity of this
task [10] considerable work has been done to use specific properties of networks
and to investigate the potential of bistability (or more general, multistationarity) of
a biological network out of the network structure and only to determine whether
there exist certain rate constants such that there are multiple steady states instead
of coming up with a semi-algebraic description of the range of parameters yielding
this property. These approaches can be traced back to the origins of Feinberg’s
chemical reaction network theory (CRNT) whose main result is that networks of
deficiency 0 have a unique positive steady state for all rate constants [9, 5]. For
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clever ways to use CRNT and other graph theoretic methods to determine in con-
trast the potential of multiple positive steady states we refer to [4, 16, 11] and to
[12] for a survey.

However, given a bistable mechanism it is important to compute the bistability
domains in parameter space, namely the parameter values for which there are more
than one stable steady states. The size of bistability domains gives the spread of
the hysteresis and quantifies the robustness of the switches. For this purpose the
work of Wang and Xia [15] is relevant: they used symbolic computation tools
to determine the number of steady states and their stability of several systems—
and they reported results up to a 5-dimensional system using specified parameter
values—but their method is extensible to parametric questions. However, we are
not aware of work on higher-dimensional systems for this context.

In this paper we use an 11-dimensional model of a mitogen-activated protein
kinases (MAPK) cascade [14] as a case study to investigate properties of the sys-
tem and algorithmic methods towards the goal of semi-algebraic descriptions of
parameter regions for which multiple positive steady states exist.

The MapK Network and the Arising System of Polynomials. The model of the
MAPK cascade we are investigating can be found in the Biomodels database [13]
as number 26 and is given by the following set of differential equations. We have
renamed the species names into x1, . . . ,x11 and the rate constants into k1, . . . ,k16 to
facilitate reading:

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12)− k4x2x4

ẋ3 = k6x7 + k8x8 − k7x3x5

ẋ4 = x6(k2 + k3)+ x7(k5 + k6)− k1x1x4 − k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11 − x2x5(k11 + k12)− k7x3x5 − k16x1x5

ẋ6 = k1x1x4 − x6(k2 + k3)

ẋ7 = k4x2x4 − x7(k5 + k6)

ẋ8 = k7x3x5 − x8(k8 + k9)

ẋ9 = k9x8 − k10x9 + k11x2x5

˙x10 = k12x2x5 − x10(k13 + k14)

˙x11 = k14x10 − k15x11 + k16x1x5

Using the left-null space of the stoichiometric matrix under positive conditions
as conservation constraint [8] we obtain the following three linear conservation
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constraints:

x5 − k17 + x8 + x9 + x10 + x11 = 0,

x4 − k18 + x6 + x7 = 0,

x1 − k19 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = 0,

where k17, k18, k19 are new constants computed from the initial data.

Computing complex solutions using homotopy solvers We estimate all param-
eters except k19 with values from Biomodels database as follows:

k1 = 0.02, k4 = 0.032, k7 = 0.045, k9 = 0.092, k15 = 0.086,

k2 = 1, k3 = 0.01, k5 = 1, k6 = 15, k8 = 1,

k10 = 1, k11 = 0.01, k12 = 0.01, k14 = 0.5, k13 = 1,

k16 = 0.0011, k17 = 100, k18 = 50.

Using the homotopy solver Bertini [1] we obtained the following results using
for k19 different parameter values found in the literature: For the parameter values
as above and k19 = 500 we obtained 6 solutions, of which 3 were positive real
solutions. For k19 = 200, a single positive solutions was obtained.

Determination of Parametric Multiple Steady States. Our focus to analyze
the system for multiple positive steady states is on methods based on real quan-
tifier elimination, which directly can deal with the quest of multiple positive real
solutions even in the presence of parameters. Although the method can handle ar-
bitrary numbers of parameters in principle, only one parameter has been left free
to come up with feasible computations.

Using a combination of Redlog [7, 17, 18, 6] and Qepcad B [3] we have ob-
tained the following results (using the estimates for the parameters except of k19 as
above):

1. For all positive choices of k19—extending to infinity—there is at least one
positive solution for (x1, . . . ,x11).

2. There is a breaking point β around k19 = 409.253 where the system changes
its qualitative behavior. We have exactly computed β as a real algebraic
number. For k19 < β there is exactly one positive solution for (x1, . . . ,x11).
For k19 > β there are at least 3 and at most 311 positive solutions for
(x1, . . . ,x11).
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The overall computation time for this parametric analysis has been les than
5 minutes.

Determining the Stability of the Fixed Points. For the numeric approximations
of the fixed points we numerically computed the eigenvalues of the Jacobian using
Maple. For k19 = 200 the single positive fixed point could be shown to be stable
in this way, whereas for k19 = 500 one of the three positive fixed points could be
shown to be unstable whereas two could be shown to be stable. Hence for k19 = 500
the system is indeed bistable.

A verification of the stability of the fixed points using the exact real algebraic
numbers and the Routh-Hurwitz criterion seems to be out of range of current meth-
ods for this example.

Conclusion and Future Work. Although the goal of semi-algebraic description
of the range of some parameters yielding bistable behavior could not be achieved
for the 11-dimensional system, which was used for the case study, our case study
shows that one is not too far off.

As there are many very relevant systems having dimensions between 10 and 20
it seems to be worth the effort to enhance the algorithmic methods and to come up
with improved implementations of them to solve this very important applications
problem for symbolic computation. In addition to improving the real quantifier
elimination methods, which can deal with the question of positive real solutions
in a parametric way directly, using methods that deal with complex solutions first
(such as Gröbner bases or regular chain methods) are a topic of future research.
A challenge for the latter methods are the parametric determination of the positive
real solutions out of the descriptions of the complex solutions.
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