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A system of N points, each having mass m, forming a planar regular polygon
(N-gon), and a central mass M, are considered. Such system, forming a planar cen-
tral configuration, called a relative equilibrium system [1]. 3N stationary points
(libration points) appear in a system. Earliest attempt to calculate libration points
coordinates in relative equilibrium system is Ollongren paper [2]. But there is
considered very special case 5, 7 and 9 bodies and large central body. It is inter-
esting to solve a problem in more general form. To hold stability (prevent fall into
a center), relative equilibrium system must rotate with common angular velocity.
Regular n-gon configuration begets a periodic solution in which the bodies rotate
uniformly about the central mass with rotation speed [3]:
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This equation may be considered as a generalized Kepler Law. Here G is a gravity
constant, R is the n-gon radius, and α j is the angle between the particles of the
central configuration. Denote x a distance between the test particle and the central
configuration. The main equations to determine stationary points was derived in
our previous papers [4] with the helps of computer algebra. The equations for the
collinear libration points are:
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The sign + is for libration point inside central configuration, and - for outside ones.
They can be reduced to a fifth degree polynomial. In dimensionless form:

(1+A)x5+(3R+2AR+B)x4+(3R2+AR2+2BR)x3+(BR2±C)x2±C R2 = 0
(4)
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and:
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Coefficient A determines area, where potential allows a linearization in small vicin-
ity of N-gon, coefficient B determines rotation of N-gon in respect expression (1).
at large N true:
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When A=0 and B=0 we have well known case 3-body problem [5]). The consid-
ered equation for determination libration points coordinates always have only one
real root. In case small m / M coordinates of libration points may be calculated as
a generalization of classical gravitation 3-body problem:
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for inner point L1 and for outer point L2 respectively. These equations are valid
for small m/M ratio and when N is not large than few hundreds. The fifth degree
equation is valid at conditions Nm << M and x << 0.25R. Then, the dependence
of libration points coordinates on mass and number of particles is studied. Coeffi-
cients A and B have a limit at large N, depends on N and m/M ratio. Accordingly,
libration point coordinates have a maximal value, which respect to a case infinites-
imal central mass. In all cases, solutions of fifth degree equations above can be
obtained numerically, or, for example, with Maple. Fifth degree equation for non-
collinear libration points:

(1+A)x5 +(3R+2AR+B)x4 +(3R2 +AR2 +2BR)x3 +BR2 x2 = 0 (10)

has trivial solution x=0 and non-trivial solution of cubic equation:

(1+A)x3 +(3R+2AR+B)x2 +(3R2 +AR2 +2BR)x+BR2 = 0 (11)

which have at least one real root. For case B=0 we have three real roots if A <
−3/4. There are addition libration points appear in considered system when masses
in a vertex of N-gon are sufficiently large.
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