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(*) Introduction: Normal Form for Continuous Piecewise Linear Maps.
(*) The Homogeneous Area Preserving Maps
(*) The associate circle map. Rotation number.

(*) The Bifurcation Diagram. Pockets with constant rotation number.
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We assume a continuous planar piecewise-linear map
and a partition of the phase plane in two regions

A x a4 B lix, € 3 v
Xntl = :
Awx " BT, 1lx, &0
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AT are 2 x 2 constant matrices
> N

B~ constant vectors in R?

In principle we have 12 parameters
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The continuity implies:
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We have only 8 parameters
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where T=, D stand for traces and determinant of matrices AT, b€ {0,1}

This normal form has only 5 parameters
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,‘ Homogeneous Area Preserving
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Homogeneous Area Preservi
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In 1992 Nusse and Yorke gave a piecewise affine approximation with only five
parameters for a piecewise map having a border collision biturcation. We note
that the quoted approximation is essentially the canonical form for continuous
piecewise linear maps just stated.

In 2005 Lagarias and Rains published a extensive study of this canonical form.

The iterations of a fixed map map G encodes the solutions of the second-order
nonlinear recurrence
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(a) The map transforms transforms rays into rays because G(A\x) = AG(x)

:
0 1

Xps W< 0
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(c) The map is invariant under the change (z,,, yn, T, T7) = (—=Zp, —Yn, T, T )

(b) The inverse map is G~ 1(x,,) = ¢

(d) The map is reversible w.r.t. the involution x — Rx = ( (1) (1) ) X
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| We denote:

The unit circle as S*
Ray: Il = {(x,y) : £ = rsin(270),y = —rcos(276),0 < 0 < 1,r > 0}

Sector: 1I{al; Br= {(@iy): = rsin(2n0) U= 1 cos(2a0] & < 0 < B.r > 0}

Y

If we denote 1y, = G(IIy,), we define

S:8" — S! such that 8; = S(6,)

276




For xg belonging to Ilg,

o= (b FalE VAl

where xy = rsin(276y),

10

vy = — cot(2ml))




For xg belonging to 1lg,

o= (R ) S e A

where xg =rsin(2n60y), vy = —cot(270y).

e fae . . o 1T — Vo " 1
cvo-(1 1)) o)
where 1 = (' — vp)zgé v, =L — )T —  coitnd, ).

¢ 1
We define the slope transition map: h(v) =

T —v
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SEg =0

[ =

Y 2 — == tan" 1 (T + cot(270)), if 0 < 6 < 1/2,

= e =1/

T
T 1 — == tan™ 1 (T~ + cot(27h)), if 1/2 < 0 < Op-,
11g

= 0, if 0 =01,

—% tan~ (T~ + cot(278)), if Op— < 0 < 1,

\

1 1
where Op- = . + o cot® (=)
7
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The Lift of the Map on th

270

g it 0 — 0
% e % tan™ 1 (TT + cot(2n0)), if 0 < 0 < 1/2,

3/4, 10 =1/2,

1 — == tan™H(T + cot(276)), if 1/2 < 0 < 1,

N

with the natural extension Ls(0 +1) =1+ Ls(0)
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Invariant Rays
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Invariant rays are given by S(8) = 6 or h(v) = 2 =
— v

or equivalently by v — Tv +1 = 0.
Four possible invariant rays

. T /@ -dg TR
4 o > —

D 2
which corresponds to
| A i | | > i

9i2 R %COt 1(_Vfr,2)a 91,2 55 | o cot 1( V1,2)
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray II3/g
when 7" = 2 and those of the ray II; /s when T = 2.

15
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray IIs /g
when T = 2 and those of the ray Il;/g when T~ = 2.

(b) If TT > 2,T~ < 2, then the two rays IIy+ and the sector I1(0,05) are

invariant sets; orbits starting at the sector II(0, 03 ) are unbounded and
approaching the ray H91+.

16



T e R — i —— — —

| o Propositio et

The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray Il3/g
when T = 2 and those of the ray Il;/s when T~ = 2.

(b) If T* > 2, T~ < 2, then the two rays II,4 and the sector I1(0,05) are

invariant sets; orbits starting at the sector I1(0, 03 ) are unbounded and
approaching the ray HQT'

(¢) If TT < 2,T~ > 2, then the two rays IT,- and the sector II(1/2,6;) are

invariant sets; orbits starting at the sector I1(1/2, 6, ) are unbounded and
approaching the ray II(0, 6; ).
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray Il /g
when T = 2 and those of the ray II;/g when T~ = 2.

(b) If TT > 2,T~ < 2, then the two rays ITy+ and the sector I1(0,05) are

invariant sets; orbits starting at the sector I1(0, 65 ) are unbounded and
approaching the ray H91+.

(¢) If TT < 2,T~ > 2, then the two rays II,- and the sector I1(1/2,6; ) are

invariant sets; orbits starting at the sector II(1/2, 6, ) are unbounded and
approaching the ray I1(0, 67 ).

() fTT = 2, T~ = 2, then the four rays Il +,7 = 1,2 and the two sectors

11(65,1) UIly UIL(0,05), and II(65,05 ) are invariant sets. Orbits starting
at these sectors are unbounded.
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~ Proposition

Assume that T— < 2,T" < 2, then the following statements
hold for map §

(a) If TTT~ < 4, then the map S has no 2-periodic orbits.

(b) f TTT~ =4,then TT < 0,7~ < 0 and the map S has
only one 2-periodic orbit which is non-hyperbolic.

() HTTT™ > 4,then TT < 0,7~ < 0 and the map S has
two 2-periodic orbits which have opposite stabilities.
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| Rotation Number
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The rotation number neither depends on the the lift nor the initial point.

If the rotation number is irrational then there are no periodic orbits.
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If the rotation number p is rational, then the map S has a periodic orbit and
one of the following three possibilities occurs.

(i) The map S has exactly one periodic orbit. Then G has exactly one periodic
orbit (up to scaling) and the other orbits diverge in modulus to co as n — +o0.

(ii) The map S has exactly two periodic orbits. Then G has no periodic orbits.

All orbits of G diverge in modulus to oo as n — +o0, with the exception of orbits
lying over the two periodic orbits of §. These exceptional orbits diverge in modulus
to oo in one direction, and converge to 0 in the other direction.

(iii) The map S has at least three periodic orbits. Then G is of finite order, that is
G = I for some k > 1, and every orbit of G is periodic.
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The tollowing statements hold for map &

(a) If either TT > 2 or T~ = 2 then p = 0.
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The following statements hold for map S
(a) If either TT > 2 or T~ > 2 then p = 0.

(b) TEF! 0. T <, .and THPT = Adihenp — 1/ 2

23
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The tfollowing statements hold for map S
(a) If either T > 2 or T= > 2 then p = 0.
(b)-If LEHaalll = 0 and. T % = 4 then g =1/
(¢) f T~ =2cos(w/q), where g € N,q > 2, and -2 < Tt < 2

2
so Tt = 2cos(2ma) with 0 < a < 1/2, then p = . —I—(;oz(j

1
In particular when 2« = 1/p, then T = 2 cos(w/p) and p = ——.

ptq
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The following statements hold for map S
(a) If either Tt >2 or. T > 2 then p = 0.
(b) If Tt &8 . and 0T > 40liede) — 1/

(¢) f T~ = 2cos(n/q), where g e N,q > 2, and -2 < T'7 < 2

2
so T* = 2cos(2ra) with 0 < @ < 1/2, then p = - +;‘&q.
1
In particular when 2o = 1/p, then TT = 2cos(w/p) and p = gk
pPTdq

2 |

(d) HTT < 0.7% < 0, and T i 46082(%) then p = A
n
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Some lines with known rotation number

-

1

(2cos (m/p),2cos(m/q)) — p= "

2
14 2ap

(2cos (w/p),2cos 2mar)) — p

TTT™ =4—p=1/2
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Generalized Fibonacd

The generalized Fibonacci polynomials are recursively defined as

Un(Z,y) = TUn_1(T,y) + Yun—2(x,y),  uo(z,y) =0, wui(z,y) =1
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The generalized Fibonacci polynomials are recursively defined as

Un(T,y) = TUn-1(2,y) + Yun—2(2,9),  wolz,y) =0, wm(z,y)=1.

By using induction

c" — (—y)to™" T — /12 + Ay
L o) =
o+ yo 2

Un(xay) B

28
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Generalized Fibonacci Polynomials _

The generalized Fibonacci polynomials are recursively defined as

un(xvy) == xun—l(xay) o yun—Q(xay)a U()(ZU,y) e 07 u1(£IZ,y) =l

By using induction

(R DT e 3o 2 4
i : where o(x,y) = z— V2?4 dy
o+ yo~1 2

un(:v, y) G

Let us define ¥,,(T') = u, (T, —1), then

\Ifn(T) — T\Ifn_l(ib,y) T \Ifn_Q(T), \IJQ(T) — O, \Ifl(ib,y) = 1
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If T = 26005

0 < B < m, then:
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If T = 2 COS 57 0 < B b T then: R .1 ( Sln(n o 1)6 73 Sln(nﬁ) )

2 2
It &, —2eos(m/n), 4L, 2c08 i
2n v i

\Ijn—l(Tn) =1, \Ijn(Tn) = 0, \Ijn—l—l(Tn) L
W, (laa— 1 ‘I’2n+1(Tn) = 0, ‘I’2n+2(Tn) =

and so, A™(T,) = -1, AT T
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~ The Dynamics near the o |
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If TT = 2cos(mw/p) and T~ = 2cos(w/q), it can be shown that GPT? = .
In particular for xo = (0, —1) we have

Gp(X()) — Ap(Tp)XO =X, Gq(—XO) — —Aq(Tq)XO — "X, 8D Gp_l_q(Xo) — X0
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The Dynan;ics near the = |

If TT = 2cos(w/p) and T~ = 2cos(m/q), it can be shown that GPT2 = [.

In particular for xg = (0, —1) we have

Gl (xg) = A8, Xg — Xy, . Glt—X{] = AT E,& X 50 Gp+q(xo) = N

Due the continuity

GPH(xo) = ANT,) AP (Tp)x0 = AT (T APT(Tp)x0 = AT (T AP~ H(T,) %0
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The Dynan;ics near the = |

If TT = 2cos(n/p) and T~ = 2cos(w/q), it can be shown that GPT9 = [.

In particular for xo = (0, —1) we have

GPxp)=Ab ()Xo = =%y, G (—%xp) = —AUT)xy = Xp, 50 Gp+q(xo) — X§

Due the continuity

GPH(x0) = AYTy) AP (Tp)x0 = AT (Ty) AP (Tp)x0 = AT (T) AP~ (T},)x0

Since det(A(7),)) = det(A(T},)) =1, the three equations
tr( AT )AR(E ) = tr( A (et (7)) —in A e ey O

define regions with constant rotation number p = 1/(p + q)
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Pockets with constant rotation number

(\D)




Some bifurcation points with T*>T-

trace(AY(T)AP(TT) = 2

(Tp—lv_Tqul)

| trace(ATH(T ) APHH(TH) =2




Diagonal in the parametric plane (1)

(Tpp Tp—l—l) trace(APTH(T)AP(TT) =2

trace( AP (T )APTH(TT) =2




Diagonal in the parameter plane (2)

(Tp—1,Tp41) (Tpt15 Tp+1)

trace( AP~ H(T)APTHTT)) =2

trace(AP (T )AP(TT)) = 2
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