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(*) Introduction: Normal Form for Continuous Piecewise Linear Maps.

(*) The Homogeneous Area Preserving Maps

(*) The associate circle map. Rotation number.

(*) The Bifurcation Diagram. Pockets with constant rotation number.



Introduction

We assume a continuous planar piecewise-linear map 
and a partition of the phase plane in two regions

⌃

x

y

⌃+⌃�

xn+1 =

(
A�

xn +B�, if xn 2 ⌃�,

A+
xn +B+, if xn 2 ⌃+.

A±
are 2⇥ 2 constant matrices

B±
constant vectors in R2

In principle we have 12 parameters 
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Introduction
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The continuity implies:

A�
✓

0

y

◆
+B�

= A+

✓
0

y

◆
+B+

A�
=

✓
a�11 a12
a�21 a22

◆
, A+

=

✓
a+11 a12
a+21 a22

◆
,

B+
= B�

=

✓
b1
b2

◆

We have only 8 parameters



A Normal Form  for CPWL Map

If a12 6= 0 our map is conjugate to the normal form

xn+1 =

8
>>>>>><

>>>>>>:

 
T� �1

D�
0

!
xn +

 
0

b

!
if xn 2 ⌃

�

 
T+ �1

D+
0

!
xn +

 
0

b

!
if xn 2 ⌃

+ [ ⌃

where T±, D±
stand for traces and determinant of matrices A±, b 2 {0, 1}

This normal form has only 5 parameters
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  Homogeneous Area Preserving CPWL Maps 
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Particular case:

(
D+ = D� = 1,

b = 0.

xn+1 = G(xn) =

8
>>>>>><

>>>>>>:

A(T�)xn =

 
T� �1

1 0

!
xn, if xn 2 ⌃�

A(T+)xn =

 
T+ �1

1 0

!
xn, if xn 2 ⌃+ [ ⌃



  Homogeneous Area Preserving CPWL Maps 
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In 1992 Nusse and Yorke gave a piecewise a�ne approximation with only five

parameters for a piecewise map having a border collision bifurcation. We note

that the quoted approximation is essentially the canonical form for continuous

piecewise linear maps just stated.

In 2005 Lagarias and Rains published a extensive study of this canonical form.

The iterations of a fixed map map G encodes the solutions of the second-order

nonlinear recurrence

xn+2 =

T

+ � T

�

2

|xn+1|+
T

+
+ T

�

2



  Homogeneous Area Preserving CPWL Maps 
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(a) The map transforms transforms rays into rays because G(�x) = �G(x)

(b) The inverse map is G

�1
(xn) =

8
>>>>>><

>>>>>>:

 
0 1

�1 T

�

!
xn, if yn < 0

 
0 1

�1 T

+

!
xn, if yn > 0

(c) The map is invariant under the change (xn, yn, T
�
, T

+
) ! (�xn,�yn, T

+
, T

�
)

(d) The map is reversible w.r.t. the involution x �! Rx =

✓
0 1

1 0

◆
x



  Rays and Map on the Unit Circle 

x

y

⇧✓

2⇡✓

We denote:

The unit circle as S

1

Ray: ⇧✓ = {(x, y) : x = r sin(2⇡✓), y = �r cos(2⇡✓), 0  ✓ < 1, r > 0}

Sector: ⇧(↵,�) = {(x, y) : x = r sin(2⇡✓), y = �r cos(2⇡✓),↵ < ✓ < �, r > 0}
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If we denote ⇧✓1 = G(⇧✓0), we define

S : S1 �! S1
such that ✓1 = S(✓0)



  Rays and Map on the Unit Circle 

x

y

⇧✓

2⇡✓
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For x0 belonging to ⇧✓0

x0 =

✓
r sin(2⇡✓0)

�r cos(2⇡✓0)

◆
=

✓
1

� cot(2⇡✓0)

◆
x0 =

✓
1

⌫0

◆
x0,

where x0 = r sin(2⇡✓0), ⌫0 = � cot(2⇡✓0)



  Rays and Map on the Unit Circle 
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For x0 belonging to ⇧✓0

x0 =

✓
r sin(2⇡✓0)

�r cos(2⇡✓0)

◆
=

✓
1

� cot(2⇡✓0)

◆
x0 =

✓
1

⌫0

◆
x0,

where x0 = r sin(2⇡✓0), ⌫0 = � cot(2⇡✓0).

G(x0) =

✓
T �1

1 0

◆
x0 =

✓
T � ⌫0

1

◆
x0 =

✓
1

⌫1

◆
x1,

where x1 = (T � ⌫0)x0, ⌫1 = (T � ⌫0)
�1

= � cot(2⇡✓1).

We define the slope transition map: h(⌫) =

1

T � ⌫



  The  Map on the Unit Circle 

x

y

⇧✓

2⇡✓
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S(✓) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1
4 , if ✓ = 0,

1
2 � 1

2⇡ tan

�1
(T+

+ cot(2⇡✓)), if 0 < ✓ < 1/2,

3
4 , if ✓ = 1/2,

1� 1
2⇡ tan

�1
(T�

+ cot(2⇡✓)), if 1/2 < ✓ < ✓T� ,

0, if ✓ = ✓T� ,

� 1
2⇡ tan

�1
(T�

+ cot(2⇡✓)), if ✓T� < ✓ < 1,

where ✓T�
=

1

2

+

1

2⇡
cot

�1
(�T�

)



  The Lift of the Map on the Unit Circle 

x

y

⇧✓

2⇡✓
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LS(✓) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1/4, if ✓ = 0,

1
2 � 1

2⇡ tan

�1
(T+

+ cot(2⇡✓)), if 0 < ✓ < 1/2,

3/4, if ✓ = 1/2,

1� 1
2⇡ tan

�1
(T+

+ cot(2⇡✓)), if 1/2 < ✓ < 1,

with the natural extension LS(✓ + 1) = 1 + LS(✓)



  Invariant Rays 
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Invariant rays are given by S(✓) = ✓ or h(⌫) =
1

T � ⌫
= ⌫

or equivalently by ⌫2 � T⌫ + 1 = 0.

Four possible invariant rays

⌫+1,2 =

T+ ⌥
p
(T+

)

2 � 4

2

, ⌫�1,2 =

T� ⌥
p
(T�

)

2 � 4

2

which corresponds to

✓+1,2 =

1

2⇡
cot

�1
(�⌫+1,2), ✓�1,2 =

1

2

+

1

2⇡
cot

�1
(�⌫�1,2)



  Proposition 
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray ⇧3/8

when T+
= 2 and those of the ray ⇧7/8 when T�

= 2.



  Proposition 
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray ⇧3/8

when T+
= 2 and those of the ray ⇧7/8 when T�

= 2.

(b) If T+ > 2, T� < 2, then the two rays ⇧✓+
1,2

and the sector ⇧(0, ✓+2 ) are

invariant sets; orbits starting at the sector ⇧(0, ✓+2 ) are unbounded and

approaching the ray ⇧✓+
1
.



  Proposition 
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray ⇧3/8

when T+
= 2 and those of the ray ⇧7/8 when T�

= 2.

(b) If T+ > 2, T� < 2, then the two rays ⇧✓+
1,2

and the sector ⇧(0, ✓+2 ) are

invariant sets; orbits starting at the sector ⇧(0, ✓+2 ) are unbounded and

approaching the ray ⇧✓+
1
.

(c) If T+ < 2, T� > 2, then the two rays ⇧✓�
1,2

and the sector ⇧(1/2, ✓�2 ) are

invariant sets; orbits starting at the sector ⇧(1/2, ✓�2 ) are unbounded and

approaching the ray ⇧(0, ✓�1 ).



  Proposition 
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The following statements hold for map G

(a) Apart from the origin, the only fixed points are the points of the ray ⇧3/8

when T+ = 2 and those of the ray ⇧7/8 when T� = 2.

(b) If T+ > 2, T� < 2, then the two rays ⇧✓+
1,2

and the sector ⇧(0, ✓+2 ) are

invariant sets; orbits starting at the sector ⇧(0, ✓+2 ) are unbounded and
approaching the ray ⇧✓+

1
.

(c) If T+ < 2, T� > 2, then the two rays ⇧✓�
1,2

and the sector ⇧(1/2, ✓�2 ) are

invariant sets; orbits starting at the sector ⇧(1/2, ✓�2 ) are unbounded and
approaching the ray ⇧(0, ✓�1 ).

(d) If T+ > 2, T� > 2, then the four rays ⇧✓±
i
, i = 1, 2 and the two sectors

⇧(✓�2 , 1) [⇧0 [⇧(0, ✓+2 ), and ⇧(✓+2 , ✓
�
2 ) are invariant sets. Orbits starting

at these sectors are unbounded.



  Proposition 

Assume that T� < 2, T+ < 2, then the following statements

hold for map S

(a) If T+T� < 4, then the map S has no 2-periodic orbits.

(b) If T+T�
= 4, then T+ < 0, T� < 0 and the map S has

only one 2-periodic orbit which is non-hyperbolic.

(c) If T+T� > 4, then T+ < 0, T� < 0 and the map S has

two 2-periodic orbits which have opposite stabilities.
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  Rotation Number 
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⇢ = lim

n!1

Ln
S(✓)� ✓

n
= lim

n!1

Ln
S(✓)

n

The rotation number neither depends on the the lift nor the initial point.

If the rotation number is irrational then there are no periodic orbits.



  Proposition
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If the rotation number ⇢ is rational, then the map S has a periodic orbit and

one of the following three possibilities occurs.

(i) The map S has exactly one periodic orbit. Then G has exactly one periodic

orbit (up to scaling) and the other orbits diverge in modulus to 1 as n ! ±1.

(ii) The map S has exactly two periodic orbits. Then G has no periodic orbits.

All orbits of G diverge in modulus to 1 as n ! ±1, with the exception of orbits

lying over the two periodic orbits of S. These exceptional orbits diverge in modulus

to 1 in one direction, and converge to 0 in the other direction.

(iii) The map S has at least three periodic orbits. Then G is of finite order, that is

Gk
= I for some k > 1, and every orbit of G is periodic.



  Proposition 
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The following statements hold for map S

(a) If either T+ > 2 or T� > 2 then ⇢ = 0.



  Proposition 
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The following statements hold for map S

(a) If either T+ > 2 or T� > 2 then ⇢ = 0.

(b) If T+ < 0, T� < 0, and T+T� > 4 then ⇢ = 1/2.



  Proposition 
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The following statements hold for map S

(a) If either T+ > 2 or T� > 2 then ⇢ = 0.

(b) If T+ < 0, T� < 0, and T+T� > 4 then ⇢ = 1/2.

(c) If T�
= 2 cos(⇡/q), where q 2 N, q > 2, and �2 < T+ < 2

so T+
= 2 cos(2⇡↵) with 0 < ↵ < 1/2, then ⇢ =

2↵

1 + 2↵q
.

In particular when 2↵ = 1/p, then T+
= 2 cos(⇡/p) and ⇢ =

1

p+ q
.



  Proposition 
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The following statements hold for map S

(a) If either T+ > 2 or T� > 2 then ⇢ = 0.

(b) If T+ < 0, T� < 0, and T+T� > 4 then ⇢ = 1/2.

(c) If T�
= 2 cos(⇡/q), where q 2 N, q > 2, and �2 < T+ < 2

so T+
= 2 cos(2⇡↵) with 0 < ↵ < 1/2, then ⇢ =

2↵

1 + 2↵q
.

In particular when 2↵ = 1/p, then T+
= 2 cos(⇡/p) and ⇢ =

1

p+ q
.

(d) If T+ < 0, T� < 0, and T+T�
= 4 cos

2
(

1
2n ) then ⇢ =

2n� 1

4n
.



T+

Some lines with known rotation number
T�

T+�2 �
p
2

(2, 2)

�2

�
p
2

T+T�
= 4 cos

2
⇣ ⇡

2n

⌘
�! ⇢ =

2n� 1

4n

(2 cos (⇡/p) , 2 cos (2⇡↵)) �! ⇢ =

2↵

1 + 2↵p
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(2 cos (⇡/p) , 2 cos (⇡/q)) �! ⇢ =

1

p+ q

T+T� = 4 �! ⇢ = 1/2



  Generalized Fibonacci Polynomials 
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The generalized Fibonacci polynomials are recursively defined as

un(x, y) = xun�1(x, y) + yun�2(x, y), u0(x, y) = 0, u1(x, y) = 1.



  Generalized Fibonacci Polynomials 
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The generalized Fibonacci polynomials are recursively defined as

un(x, y) = xun�1(x, y) + yun�2(x, y), u0(x, y) = 0, u1(x, y) = 1.

By using induction

un(x, y) =
�

n � (�y)

n
�

�n

� + y�

�1
, �(x, y) =

x�
p

x

2
+ 4y

2



  Generalized Fibonacci Polynomials 
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The generalized Fibonacci polynomials are recursively defined as

un(x, y) = xun�1(x, y) + yun�2(x, y), u0(x, y) = 0, u1(x, y) = 1.

By using induction

un(x, y) =
�

n � (�y)

n
�

�n

� + y�

�1
, where �(x, y) =

x�
p

x

2
+ 4y

2

Let us define  n(T ) = un(T,�1), then

 n(T ) = T n�1(x, y)� n�2(T ),  0(T ) = 0,  1(x, y) = 1.



  The power of the matrix A 
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If A =

✓
T �1

1 0

◆
then: An

=

✓
 n+1(T ) � n(T )
 n(T ) � n�1(T )

◆

If T = 2 cos�, 0 < � < ⇡, then: An
=

1
sin �

✓
sin(n+ 1)� � sin(n�)
sin(n�) � sin(n� 1)�

◆



  The power of the matrix A 
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If A =

✓
T �1

1 0

◆
then: An

=

✓
 n+1(T ) � n(T )
 n(T ) � n�1(T )

◆

If T = 2 cos�, 0 < � < ⇡, then: An
=

1
sin �

✓
sin(n+ 1)� � sin(n�)
sin(n�) � sin(n� 1)�

◆

If Tn = 2 cos(⇡/n), ˆTn = 2 cos

✓
2⇡

2n+ 1

◆

 n�1(Tn) = 1,  n(Tn) = 0,  n+1(Tn) = �1,

 2n(
ˆTn) = 1,  2n+1(

ˆTn) = 0,  2n+2(
ˆTn) = 1.

and so, An
(Tn) = �I, A2n+1

(

ˆTn) = I.



  The Dynamics near the point (Tp , Tq)
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If T+
= 2 cos(⇡/p) and T�

= 2 cos(⇡/q), it can be shown that G

p+q
= I.

In particular for x0 = (0,�1) we have

G

p
(x0) = Ap

(Tp)x0 = �x0, G

q
(�x0) = �Aq

(Tq)x0 = x0, so G

p+q
(x0) = x0



  The Dynamics near the point (Tp , Tq)
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If T+
= 2 cos(⇡/p) and T�

= 2 cos(⇡/q), it can be shown that G

p+q
= I.

In particular for x0 = (0,�1) we have

G

p
(x0) = Ap

(Tp)x0 = �x0, G

q
(�x0) = �Aq

(Tq)x0 = x0, so G

p+q
(x0) = x0

Due the continuity

G

p+q
(x0) = Aq

(Tq)A
p
(Tp)x0 = Aq�1

(Tq)A
p+1

(Tp)x0 = Aq+1
(Tq)A

p�1
(Tp)x0



  The Dynamics near the point (Tp , Tq)
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If T+
= 2 cos(⇡/p) and T�

= 2 cos(⇡/q), it can be shown that G

p+q
= I.

In particular for x0 = (0,�1) we have

G

p
(x0) = Ap

(Tp)x0 = �x0, G

q
(�x0) = �Aq

(Tq)x0 = x0, so G

p+q
(x0) = x0

Due the continuity

G

p+q
(x0) = Aq

(Tq)A
p
(Tp)x0 = Aq�1

(Tq)A
p+1

(Tp)x0 = Aq+1
(Tq)A

p�1
(Tp)x0

Since det(A(Tp)) = det(A(Tq)) = 1, the three equations

tr(Aq
(T�

)Ap
(T+

)) = tr(Aq�1
(T�

)Ap+1
(T+

)) = tr(Aq+1
(T�

)Ap�1
(T+

)) = 2

define regions with constant rotation number ⇢ = 1/(p+ q)



T+

Pockets with constant rotation number
T�
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(Tp, Tq)

(Tp+1, Tq�1)

(Tp�1, Tq+1)

Some bifurcation points with T+>T-

36

trace(Aq+1(T�)Ap�1(T+) = 2

trace(Aq�1(T�)Ap+1(T+) = 2

trace(Aq(T�)Ap(T+) = 2



Diagonal in the parametric plane (1)

(Tp+1, Tp)

(Tp, Tp+1)

37

trace(Ap(T�)Ap+1(T+) = 2

trace(Ap+1(T�)Ap(T+) = 2

(T̂p, T̂p)

ˆTp = 2 cos

⇡

p+ 1
2



Diagonal in the parameter plane (2)
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(Tp, Tp)

(Tp+1, Tp�1)

(Tp�1, Tp+1) (Tp+1, Tp+1)

(Tp�1, Tp�1)

trace(Ap(T�)Ap(T+)) = 2

trace(Ap�1(T�)Ap+1(T+)) = 2

trace(Ap+1(T�)Ap�1(T+)) = 2
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