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Summary

• We consider the family of planar discontinuous 
piecewise-linear systems with two linearity zones 
separated by a straight line. 

•  Three years ago, an example in this family by Huan and 
Yang was reported to have three nested limit cycles, so 
breaking a natural conjecture on being two the maximum 
number of limit cycles.

• We do know that it suffices the presence of one focus in 
one zone and an invisible tangency in the other to give a 
general mechanism justifying the existence of three limit 
cycles.



Summary

• Here, we consider the boundary focus + saddle case. We 
show how one can get the three limit cycles through 
simultaneous local  and global bifurcations. 

• We exploit a reduced Liénard-like canonical form with 
only five parameters plus two modal ones: the modal 
parameters define the kind of dynamics in each zone, two 
more define the divergence and the equilibrium position 
and the last one characterizes the sliding set.



Planar PWL Filippov Systems 
  (Utkin 1992, Kuznetsov et al. 2003) 

⌃ = {(x, y) 2 R2 : x = 0}
• We consider one discontinuity boundary defined by

• The boundary induces the partition of the phase 
plane into

S

+ = {(x, y) 2 R2 : x > 0}.

S

� = {(x, y) 2 R2 : x < 0},

The systems to be studied become

ẋ = F(x) =

(
F

+
(x) =

�
F+

1 (x), F+
2 (x)

�T
= A+

x + b

+, if x 2 S+,

F

�
(x) =

�
F�1 (x), F�2 (x)

�T
= A�x + b

�, if x 2 S�.



Planar PWL Filippov Systems (cont’d) 

• As usual we define the    -subsets⌃

⌃s = {(0, y) : F+
1 (0, y)F�1 (0, y) 6 0} (sliding set)

⌃

c
= {(0, y) : F+

1 (0, y)F�1 (0, y) > 0} (crossing set)

or

or



Planar PWL Filippov Systems (cont’d) 

ẋ = 0, ẏ = g(y) =
F

+
1 (x)F�2 (x)� F

�
1 (x)F+

2 (x)
F

+
1 (x)� F

�
1 (x)

, x 2 ⌃s
.

• We can also define the Filippov vector field



Planar PWL Filippov Systems (cont’d) 

• Some other standard definitions follow:
Points (0, ȳ) 2 ⌃

s
with g(ȳ) = 0 act in some sense as equilibria of our system

and they are called pseudo-equilibria.

A double invisible tangency point with close orbits spiraling around it, is

called a pseudo-focus or fused focus.

A pseudo-equilibrium in the attractive part of the sliding set with g0(y) < 0

is a stable pseudo-node, being a pseudo-saddle if g0(y) > 0.

Similarly, a pseudo-equilibrium in the repulsive part with g0(y) > 0) is an

unstable pseudo-node, being again a pseudo-saddle if g0(y) < 0.

Note that at pseudo-equilibria (0, ȳ) which are neither boundary equilibrium

nor tangency points we have

F�
2 (0, ȳ)

F�
1 (0, ȳ)

=

F+
2 (0, ȳ)

F+
1 (0, ȳ)

,

and so the two vector fields F+
and F�

are anticollinear.



The Huan-Yang example

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear
systems, Discrete and Continuous Dynamical Systems-A 32 (2012) pp. 2147–2164.

Theorem (J. Llibre & E.P.) The above planar non–smooth piecewise linear

di↵erential system with two zones has 3 limit cycles surrounding its unique

equilibrium point located at the origin.

J. Llibre and E. P., Three Nested Limit Cycles In Discontinuous Piecewise Linear Di↵erential

Systems With Two Zones, Dynamics of Continuous, Discrete and Impulsive Systems-B 19 (2012)

pp. 325–335.

The planar non-smooth piecewise linear di↵erential system with two zones
separated by a straight line corresponding to Example 5.1 of Huan and Yang is

ẋ =
⇢

A

�
x if x < 1,

A

+
x if x � 1,

where x = (x, y)T with
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(after rescaling time, di↵erently in each side)
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Sliding set not shown



✓
ẋ

ẏ

◆
=

✓
a

+
11x + a

+
12y + b

+
1

a

+
21x + a

+
22y + b

+
2

◆

⌃ = {(x, y) 2 R2 : x = 0}

✓
ẋ

ẏ

◆
=

✓
a

�
11x + a

�
12y + b

�
1

a

�
21x + a

�
22y + b

�
2

◆

We will assume a�12, a
+
12 6= 0 to avoid ‘wall’ cases.

Tangencies and sliding set

At tangency points, we speak of visible (invisible) tangency depending on

the sign of ẍ. Since ẍ|
x=0 = a11(a12y + b1) + a12(a21y + b2), we obtain

ẍ|
ẋ=0 = a12b2 � a21b1

We have a tangency point in ⌃ when ẋ|
x=0 = a12y + b1 vanishes.



Tangencies and sliding set (cont’d)

Assuming a�12 < 0, there are two possibilities for a+
12:

(a+
12 < 0: bounded sliding)



Tangencies and sliding set (cont’d)

Assuming a�12 < 0, there are two possibilities for a+
12:

(a+
12 < 0: bounded sliding)



Tangencies and sliding set (cont’d)

Assuming a�12 < 0, there are two possibilities for a+
12:

(a+
12 > 0: bounded crossing)



Tangencies and sliding set (cont’d)

Assuming a�12 < 0, there are two possibilities for a+
12:

(a+
12 > 0: bounded crossing)



For a non-smooth system... a non-smooth change!

We do a continuous piecewise linear change of variables u = f(x), where

u = �a

+
12

✓
x

a

�
22x� a

�
12y

◆
+ a

+
12

✓
0

b

�
1

◆
, x < 0,

and

u = �a

�
12

✓
x

a

+
22x� a

+
12y

◆
+ a

+
12

✓
0

b

�
1

◆
, x > 0,

and afterwards rename the variable u to x.

This change is a global homeomorfism that conjugates the vector 
field in each halfplane, separately.  Such a conjugacy cannot be 
extended to the sliding vector field (but it works for our purpose)

M. Guardia, T.M. Seara, and M. A. Teixeira,

Generic bifurcations of low codimension of planar Filippov Systems,

Journal of Di↵erential Equations 250 (2011) 1967–2023.



Liénard canonical form for DPWL systems. Assume that a+
12a

�
12 > 0

(bounded sliding set). Then the system can be written in the form,

ẋ =

✓
T� �1

D� 0

◆
x�

✓
0

a�

◆
if x 2 S�,

ẋ =

✓
T+ �1

D+
0

◆
x�

✓
�b
a+

◆
if x 2 S+,

where T ,D stand for trace and determinant, and

a� = a+
12(a

�
12b

�
2 � a�22b

�
1 ), a+

= a�12(a
+
22b

+
1 � a+

12b
+
2 ), b = a+

12b
�
1 � a�12b

+
1 .

This system has as its tangency points (0,0) and (0,b).  

Apart from the linear invariants, the other three parameters are associated to the 
x-coordinates of the equilibrium points (𝒶⁺ and 𝒶⁻) and the size and stability of 
the sliding set (b).

The discontinuous canonical form



The discontinuous canonical form

ẋ = T

+
x� y + b

ẏ = D

+
x� a

+
ẋ = T

–
x� y

ẏ = D

–
x� a

�

x = 0

(0, b)

(0, 0)

Repulsive sliding set 
b > 0



The discontinuous canonical form

ẋ = T

+
x� y + b

ẏ = D

+
x� a

+
ẋ = T

–
x� y

ẏ = D

–
x� a

�
x = 0

(0, b)

(0, 0)Attractive sliding set 
b < 0



Γ−

Γ+

x

L−

L+

yL

yU

Ω− Ω+

y

A necessary condition for crossing periodic orbits

Proposition Defining the values �� = area (⌦�),
�+ = area (⌦+) and h = yU � yL, then we have

T��� + T+�+ + bh = 0.

b



The universal canonical form with modal parameters

Proposition. Our canonical form can be rewritten as

ẋ =

✓
2�L �1

�2
L �m2

L 0

◆
x�

✓
0
aL

◆
if x 2 S�,

ẋ =

✓
2�R �1

�2
R �m2

R 0

◆
x�

✓
�b
aR

◆
if x 2 S+,

where the modal parameters m{R,L} 2 {i, 0, 1} are defined for each zone by

m =

8
<

:

i if T 2 � 4D < 0 (focus),
0 if T 2 � 4D = 0 (improper node),
1 if T 2 � 4D > 0 (node/saddle),

the symbol i standing for the imaginary unit of the complex plane (i2 = �1).

Accordingly, the new constant terms a{R,L} and normalized semi-traces �{R,L} are

a{R,L} =

a±

!{R,L}
, �{R,L} =

T±

2!{R,L}
, where !{R,L} =

8
>>><

>>>:

s����
(T±

)

2

4

�D±
���� if m{R,L} 6= 0,

1 if m{R,L} = 0.



The universal canonical form with modal parameters

Proposition. Our canonical form can be rewritten as

ẋ =

✓
2�L �1

�2
L �m2

L 0

◆
x�

✓
0
aL

◆
if x 2 S�,

ẋ =

✓
2�R �1

�2
R �m2

R 0

◆
x�

✓
�b
aR

◆
if x 2 S+,

where the modal parameters m{R,L} 2 {i, 0, 1} are defined for each zone by

m =

8
<

:

i if T 2 � 4D < 0 (focus),
0 if T 2 � 4D = 0 (improper node),
1 if T 2 � 4D > 0 (node/saddle),

the symbol i standing for the imaginary unit of the complex plane (i2 = �1).

Accordingly, the new constant terms a{R,L} and normalized semi-traces �{R,L} are

a{R,L} =

a±

!{R,L}
, �{R,L} =

T±

2!{R,L}
, where !{R,L} =

8
>>><

>>>:

s����
(T±

)

2

4

�D±
���� if m{R,L} 6= 0,

1 if m{R,L} = 0.

(� = � ±m)



The trace-determinant plane



The universal canonical form in the trace-determinant plane

m = i

m = 0

m = 1

T

D



The universal canonical form in the trace-determinant plane

m = i

m = 0

m = 1

T

D

The point canonizes all the foci in the dashed half-parabola 



The universal canonical form in the trace-determinant plane

m = i

m = 0

m = 1

T

D

The point canonizes all the nodes in the dashed half-parabola 



The universal canonical form in the trace-determinant plane

m = i

m = 0

m = 1

T

D

The point canonizes all the saddles in the dashed half-parabola 



The canonical form in the focus-saddle case

Proposition If in system (1) a+12 < 0, a�12 < 0,

4 detA� � tr(A�
)

2 > 0, and detA+ < 0, then after

some continuous change of variables we arrive at the

normalized canonical form

˙

x =

✓
2�L �1

�2
L + 1 0

◆
x�

✓
0

aL

◆
, if x 2 S�,

˙

x =

✓
2�R �1

�2
R � 1 0

◆
x�

✓
�b
aR

◆
, if x 2 S+,

where |�R| < 1.

ẋ =

⇢
A�

x+ b

�, if x 2 S�,
A+

x+ b

+, if x 2 S+,
(1)



The canonical form in the focus-saddle case

Proposition If in system (1) a+12 < 0, a�12 < 0,

4 detA� � tr(A�
)

2 > 0, and detA+ < 0, then after

some continuous change of variables we arrive at the

normalized canonical form

˙

x =

✓
2�L �1

�2
L + 1 0

◆
x�

✓
0

aL

◆
, if x 2 S�,

˙

x =

✓
2�R �1

�2
R � 1 0

◆
x�

✓
�b
aR

◆
, if x 2 S+,

where |�R| < 1.

ẋ =

⇢
A�

x+ b

�, if x 2 S�,
A+

x+ b

+, if x 2 S+,
(1)



�1 < �R < 0, �L > 0

The canonical form in the focus-saddle case

x = 0

(0, b)

(0, 0)

Attractive sliding set 
b < 0

ẋ = 2�Lx� y

ẏ = (�2
L + 1)(x� xL)

ẋ = 2�Rx� y + b

ẏ = (�2
R � 1)(x� xR)-Buckling,

-Critical Crossing,
-Saddle-node



yu = b+ (�R + 1)xR > b

ys = b+ (�R � 1)xR < b

xR = aR

�2
R�1

�1 < �R < 0, �L > 0

b

P�1
R (y)

y0

y1

y0

y1

b

Computing the half-return maps: the right one



�1 < �R < 0, �L > 0

xL = aL

�2
L+1

Computing the half-return maps: the left one



aL > 0

x

y0

y0

y1

y1

PL(y)

y0t

⇡

It can be extended as an
analytical involution

PL(y) = �y � 4�L
3aL

y2 � 16�2
L

9a2L
y3 � 4�L(9m2

L + 79�2
L)

135a3L
y4 + · · ·

Computing the half-return maps: the left one



Computing the half-return maps: the left one



aL = 0

x

y0y0

y1

y1

y0

t

⇡

It can be extended as a
non-analytical involution

Computing the half-return maps: the left one



Computing the half-return maps: the left one

'�(t) = 1� e�t(cos t� � sin t)



Computing the half-return maps: the left one



aL < 0

x

y0y1

ŷ

ŷ

PL(y)

t
⇡

y0

t̂

It cannot be extended 
as an involution

Computing the half-return maps: the left one



The left boundary focus transition

y0y1

ŷ
PL(y)

aL > 0

aL < 0
aL = 0

y0

t
⇡

aL < 0

aL > 0

aL = 0

t̂



The left boundary focus transition

P�1
L (y)

aL < 0

aL > 0

aL = 0

y0y1

ŷ

PL(y)

aL > 0

aL < 0 aL = 0

y0

t
⇡

aL < 0

aL > 0

aL = 0

t̂ aL < 0

aL > 0
aL = 0 �⇡

�t̂



y

PL(y)

P�1
R (y)b = 0

The boundary focus-saddle case

e⇡�L <
1� �R
1 + �R

Stable limit cycle!

aL = 0



y

PL(y)

P�1
R (y)b = 0

The boundary focus-saddle case

e⇡�L =
1� �R
1 + �R

Homoclinic connection!

aL = 0



y

PL(y)

P�1
R (y)b = 0

The boundary focus-saddle case

e⇡�L >
1� �R
1 + �R

No periodic orbits!

aL = 0



The boundary focus-saddle case

Proposition Considering �L > 0, �1 < �R < 0, aL = 0,

aR < 0, and b = 0, the following statements hold.

(a) If e⇡�L < (1 � �R)/(1 + �R), then there exists one stable

limit cycle surrounding the unstable boundary focus at the

origin and no homoclinic connections.

(b) If e⇡�L
= (1 � �R)/(1 + �R), then there exists one ho-

moclinic connection to the saddle and no periodic orbits

surrounding the boundary focus.

(c) If e⇡�L > (1��R)/(1+�R), then the system has no periodic

orbits and no homoclinic connections.



The boundary focus-saddle case

Proposition Considering �L > 0, �1 < �R < 0, aL = 0,

aR < 0, and b = 0, the following statements hold.

(a) If e⇡�L < (1 � �R)/(1 + �R), then there exists one stable

limit cycle surrounding the unstable boundary focus at the

origin and no homoclinic connections.

(b) If e⇡�L
= (1 � �R)/(1 + �R), then there exists one ho-

moclinic connection to the saddle and no periodic orbits

surrounding the boundary focus.

(c) If e⇡�L > (1��R)/(1+�R), then the system has no periodic

orbits and no homoclinic connections.



Perturbing the critical boundary focus-saddle case

e⇡�L =
1� �R
1 + �R

�1 < �R < 0, �L > 0



y

PL(y)

P�1
R (y)

e⇡�L =
1� �R
1 + �R

b = 0

Perturbing the critical boundary focus-saddle case

aL = 0



y

PL(y)

P�1
R (y)

e⇡�L =
1� �R
1 + �R

b < 0

Perturbing the critical boundary focus-saddle case

Two limit cycles!

aL = 0



Theorem Considering �1 < �R < 0, xR > 0, �L =

1
⇡ ln

⇣
1��R

1+�R

⌘
> 0, the

following statements hold.

(a) For xL = 0, b = 0 the origin is an unstable boundary focus surrounded by

an homoclinic connection and there are no periodic orbits.

(b) The above homoclinic connection persists on the graph of a curve defined

by b = bH(xL) in a neighborhood of the origin in the parameter plane

(xL, b). The local expansion of the function bH(xL) is given by

b = bH(xL) = 2�LxL � (1 + �

2
L) sinh(⇡�L)

2xR
x

2
L + · · ·

(c) There exists �

⇤
> 0 such that if |xL| < �

⇤
then in passing from b = bH(xL)

to b < bH(xL) we pass from the homoclinic orbit to a stable crossing

periodic orbit.

Persistence of homoclinic connections on a curve in the          -plane(aL, b)

b HC

xL

xR = aR

�2
R�1

xL = aL

�2
L+1



Theorem Considering �1 < �R < 0, xR > 0, �L =

1
⇡ ln

⇣
1��R

1+�R

⌘
> 0, the

following statements hold.

(a) For xL = 0, b = 0 the origin is an unstable boundary focus surrounded by

an homoclinic connection and there are no periodic orbits.

(b) The above homoclinic connection persists on the graph of a curve defined

by b = bH(xL) in a neighborhood of the origin in the parameter plane

(xL, b). The local expansion of the function bH(xL) is given by

b = bH(xL) = 2�LxL � (1 + �

2
L) sinh(⇡�L)

2xR
x

2
L + · · ·

(c) There exists �

⇤
> 0 such that if |xL| < �

⇤
then in passing from b = bH(xL)

to b < bH(xL) we pass from the homoclinic orbit to a stable crossing

periodic orbit.

Persistence of homoclinic connections on a curve in the          -plane(aL, b)

b HC

xL

A big limit cycle!



(aL, b)Two small limit cycles can bifurcate after some           -perturbation(aL, b)

Proposition Assume that �L > 0, xR > 0, �R < 0. Then there exist � > 0

and two continuous functions �1(xL) and �2(xL) with �1(0) = �2(0) = 0 and

satisfying

�1(xL) < �2(xL) < 0

for �� < xL < 0, such that for the parameter sector defined by

�1(xL) < b < �2(xL) and �� < xL < 0 the system has two small nested

crossing periodic orbits. Moreover, we have

�1(xL) = �e�L t̂
sin

ˆt

2

xL +O(x2
L),

and

�2(xL) =
�L

�2
L + 1

⇣
1� sinh(�LtM )

�L sin tM

⌘
xL +O(x2

L),

where tM is the only solution of tanh(�Lt) = �L tan t in the interval (⇡, 3⇡/2).

b

xL



THREE limit cycles can bifurcate after some           -perturbation

b

y

PL(y)

P�1
R (y)

(aL, b)

HC

xL

xL = aL

�2
L+1



THREE limit cycles can bifurcate after some           -perturbation(aL, b)

b

P�1
R (y)

PL(y)

y HC

xL

xL = aL

�2
L+1



THREE small limit cycles can bifurcate after some           -perturbation(aL, b)

b

P�1
R (y)

PL(y)

y HC

Three limit cycles!

xL

+ the big limit cycle from HC xL = aL

�2
L+1



THREE limit cycles can bifurcate after some           -perturbation(aL, b)

Final theorem Considering

�1 < �R < 0, xR > 0, �L =

1

⇡

ln

⇣
1� �R

1 + �R

⌘
> 0,

the following statement holds.

There exist � > 0 and two continuous functions �1(xL) and

�2(xL) with �1(0) = �2(0) = 0 and satisfying

�1(xL) < �2(xL) < 0

for �� < xL < 0, such that for the parameter sector defined

by �1(xL) < b < �2(xL) and �� < xL < 0 the system has three

limit cycles: two small nested crossing periodic orbits surround-

ing the attractive sliding set, and a third big limit cycle sur-

rounding them.

b
HC

xL



The parametric region with three limit cycles:

�R = �0.1, xR = 1

b

xL

yu = b+ (�R + 1)xR = 0

HC

HS

SN

BCK

CC



The parametric region with three limit cycles:

�R = �0.1, xR = 1

b

xL

yu = b+ (�R + 1)xR = 0

HC

HS

SN

BCK

CC



Flight times in a representative section of the bifurcation set

tL = t̂

xL

xL

tR

HC

CC BCK

SN

SN

�R = �0.1, xR = 1

CC

xL

b

HC

HC

3 2 010# Crossing limit cycles



Three small limit cycles can bifurcate after some           -perturbation(aL, b)

Final theorem Considering

�1 < �R < 0, xR > 0, �L =

1

⇡

ln

⇣
1� �R

1 + �R

⌘
> 0,

the following statement holds.

There exist � > 0 and two continuous functions �1(xL) and

�2(xL) with �1(0) = �2(0) = 0 and satisfying

�1(xL) < �2(xL) < 0

for �� < xL < 0, such that for the parameter sector defined

by �1(xL) < b < �2(xL) and �� < xL < 0 the system has three

limit cycles: two small nested crossing periodic orbits surround-

ing the attractive sliding set, and a third big limit cycle sur-

rounding them.

b
HC

xL



Conclusions

• The study of all possible dynamics even in planar discontinuous 
PWL systems with two zones is a formidable challenge. Some 
headway is made in this problem thanks to a canonical form with 
fewer parameters.

• Thanks to the features of the boundary focus, we have shown 
how is possible to obtain three limit cycles, combining local and 
global bifurcations.

• A conjecture to prove or disprove:  the maximum number of 
limit cycles to be found in the family is exactly three.
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