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Revisiting the focus-fold singularity
in planar Filippov systems
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Summary

® We consider the family of planar discontinuous
piecewise-linear systems with two linearity zones
separated by a straight line.

® Three years ago,an example in this family by Huan and
Yang was reported to have three nested limit cycles, so
breaking a natural conjecture on being two the maximum
number of limit cycles.

® We do know that it suffices the presence of one focus in
one zone and an invisible tangency in the other to give a

general mechanism justifying the existence of three limit
cycles.



Summary

® Here, we consider the boundary focus + saddle case.We
show how one can get the three limit cycles through
simultaneous local and global bifurcations.

® We exploit a reduced Lienard-like canonical form with
only five parameters plus two modal ones: the modal
parameters define the kind of dynamics in each zone, two
more define the divergence and the equilibrium position
and the last one characterizes the sliding set.




Planar PWL Filippov Systems
(Utkin 1992, Kuznetsov et al. 2003)

® We consider one discontinuity boundary defined by
¥ ={(z,y) €R?:x =0}

® The boundary induces the partition of the phase

plane into

The systems to be studied become
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Planar PWL Filippov Systems (cont'd)

® As usual we define the Y -subsets

%¢ = {(0,y) : F;"(0,9)F, (0,y) > 0}

< <

2" ={(0,y) : F;7(0,y)F, (0,y) < 0}
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Planar PWL Filippov Systems (cont'd)

® We can also define the Filippov vector field

Fi" (x)Fy (x) — Fy (%) Fy (x)
Fr(x)— F

—
/X
e
N———




Planar PWL Filippov Systems (cont'd)

® Some other standard definitions follow:

Points (0, y) € ¥° with g(7) = 0 act in some sense as equilibria of our system
and they are called pseudo-equilibria.

A double invisible tangency point with close orbits spiraling around it, is
called a pseudo-focus or fused focus.

A pseudo-equilibrium in the attractive part of the sliding set with ¢'(y) < 0
is a stable pseudo-node, being a pseudo-saddle if ¢’'(y) > 0.

Similarly, a pseudo-equilibrium in the repulsive part with ¢'(y) > 0) is an
unstable pseudo-node, being again a pseudo-saddle if g’'(y) < 0.

Note that at pseudo-equilibria (0, %) which are neither boundary equilibrium
nor tangency points we have

FQ_ (07 g) F2+ (Oa g)

Fl_ (ng) Fl_F(Oag)

)

and so the two vector fields F™ and F— are anticollinear.



The Huan-Yang example

The planar non-smooth piecewise linear differential system with two zones
separated by a straight line corresponding to Example 5.1 of Huan and Yang is

. ATx itx <1,
=) Atx ifz> 1,

where x = (z,y)? with

! = 51090 _%
A= — d At =
37 13 ), Al 119

Theorem (J. Llibre & E.P.) The above planar non-smooth piecewise linear
differential system with two zones has 3 limit cycles surrounding its unique
equilibrium point located at the origin.

S.-M. HUAN AND X.-S. YANG, On the number of limit cycles in general planar piecewise linear
systems, Discrete and Continuous Dynamical Systems-A 32 (2012) pp. 2147-2164.

J. LLIBRE AND E. P., Three Nested Limit Cycles In Discontinuous Piecewise Linear Differential
Systems With Two Zones, Dynamics of Continuous, Discrete and Impulsive Systems-B 19 (2012)

pp. 325-335.



Sliding set not shown
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(after rescaling time, differently in each side)



Tangencies and sliding set

¥ ={(z,y) € R*: 2 = 0}
( P > _ ( ap T+ ajy + by ) ( P > _ ( ali + ajyy + by >
Y U9 % + QoY + by Y a3, T + Aoy + by

We will assume a...a 0 to avoid ‘wall’ cases.
125 @19

We have a tangency point in ¥ when | __, = a12y + b1 vanishes.

At tangency points, we speak of visible (invisible) tangency depending on
the sign of Z. Since Z| _, = a11(a12y + b1) + a12(a21y + b2), we obtain

E|._q = a12ba — a1y



Tangencies and sliding set (contd)

Assuming a;, < 0, there are two possibilities for a5:
—
_ o
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(a7, < 0: bounded sliding)
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Tangencies and sliding set (contd)

Assuming a;, < 0, there are two possibilities for a5:
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(a7, > 0: bounded crossing)



Tangencies and sliding set (contd)

Assuming a;, < 0, there are two possibilities for a5:

(a7, > 0: bounded crossing)



For a non-smooth system...a non-smooth change!

We do a continuous piecewise linear change of variables u = f(x), where

_ X + 0
u= a12( agzm—af2y>+a12< b ), x < 0,

u——cf( o )—I—cﬁ( O) x>0
2\ agyr — afhy 2\ by )7 ’

and afterwards rename the variable u to x.

and

This change is a global homeomorfism that conjugates the vector
field in each halfplane, separately. Such a conjugacy cannot be
extended to the sliding vector field (but it works for our purpose)

M. GUARDIA, T .M. SEARA, AND M. A. TEIXEIRA,

Generic bifurcations of low codimension of planar Filippov Systems,
Journal of Differential Equations 250 (2011) 1967-2023.




The discontinuous canonical form

Liénard canonical form for DPWL systems. Assume that a/,a;, > 0
(bounded sliding set). Then the system can be written in the form,

. (T -1 0 . _
X_<D_ O)X—(@_)IfXGS,

X_<D+ O)X—<a+>1fXES,

where T'.D stand for trace and determinant, and

e + _ + + _ ot -
a” = ajy(apdy —apby), a” =ap(and] —apby), b=ajb; —apdt

This system has as its tangency points (0,0) and (0,b).

Apart from the linear invariants, the other three parameters are associated to the

x-coordinates of the equilibrium points (a” and a”) and the size and stability of
the sliding set (b).



The discontinuous canonical form

b>0 (0,0)
Repulsive sliding set
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The discontinuous canonical form

b<0
Attractive sliding set
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A necessary condition for crossing periodic orbits

Proposition Defining the values ¢~ = area (27),
ot =area (Q7) and h = yy — yr, then we have

T o~ +TT ot +bh =0.




The universal canonical form with modal parameters

Proposition. Our canonical form can be rewritten as

. 2’7L —1 0 . —
— — fxe S,
5 (Wﬁ_m% O)X ()X

P Q/VR _1 _b .
x (7]2%—771% O)X (aR)IX

where the modal parameters myr 1y € {¢,0,1} are defined for each zone by

i if T%—4D < 0 (focus),
m=1< 0 if T?%—-4D =0 (improper node),
1 if T?—4D >0 (node/saddle),

the symbol ¢ standing for the imaginary unit of the complex plane (i* = —1).

Accordingly, the new constant terms agp 1) and normalized semi-traces v(g, } are

)
(T+)? N
JEE T \/‘ 1 D

= p— h =
a{R,L} W{R,L}7 Y{R,L} 2W{R,L}’ where wir Ly = {

it mygry #0,

1 if m{RyL} = 0.



The universal canonical form with modal parameters

Proposition. Our canonical form can be rewritten as

. 2’7L —1 0 . —
— — fxe S,
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The trace-determinant plane

unstable spiral

source

sink

safldle point




The universal canonical form in the trace-determinant plane
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The universal canonical form in the trace-determinant plane
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The point canonizes all the foci in the dashed half-parabola



The universal canonical form in the trace-determinant plane

D

(L
™
™

The point canonizes all the nodes in the dashed half-parabola



The universal canonical form in the trace-determinant plane
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The point canonizes all the saddles in tﬁ“@ dashed half-parabola



The canonical form in the focus-saddle case

X— A/4_}(——‘|:)—7 leGS_, (1)
| Atx+Dbt, ifxe ST,

Proposition If in system (1) af, < 0, aj, < O,
4det A= —tr(A7)? > 0, and det AT < 0, then after
some continuous change of variables we arrive at the
normalized canonical form

. 27[1 —1 0 . _
— _ f
X (’y%+1 O)X (GL)’ fxe S,

X_(’y%%—l O)X (CLR), itxe ST,

where |[vr| < 1.



The canonical form in the focus-saddle case

X— A/4_}(——‘|:)—7 leGS_, (1)
| ATx+b", ifxe ST,

Proposition If in system (1) af, < 0, aj, < O,
4det A= —tr(A7)? > 0, and det AT < 0, then after
some continuous change of variables we arrive at the
normalized canonical form

. 27[1 —1 0 . _
— _ f
X (’y%+1 O)X (QL)’ fxe S,

X_(’y%%—l O)X (aR), itxe ST,

where |[vr| < 1.




The canonical form in the focus-saddle case

—1<vp <0, ~L>0

b<O0

Attractive sliding set

-Buckling,

-Saddle-node

-Critical Crossing,

(0,0)

2YLT — Y
(77 + 1)(z

/

(0,0)

—LIZ'L) Qj:O

2YprT — Yy + b
(& — (= — zR)



Computing the half-return maps: the right one

—1<vp <0, ~L>0

Y1
b _a
LR = /yéfil
Yo S




Computing the half-return maps: the left one

—1<vp <0, ~L>0

A

[ |
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Computing the half-return maps: the left one

ar >0

——————
aaaa

T

t

Y1 o

It can be extended as an
analytical involution

Pr,(y)

Avr (9m3 + 79~2
VL( L i ’YL)y4+
135a;




Computing the half-return maps: the left one

(a) When ay, = 0 the left Poincaré map is defined for
y =0 as

Pp(y) = —e™"y.



Computing the half-return maps: the left one

CLL:O
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It can be extended as a
non-analytical involution

Pi(y) = —e""y



Computing the half-return maps: the left one

(b) Assuming a;, < 0 and vy > 0, the left Poincaré
map Py, 18 well defined for y = 0 and s given by the

exrpressions
PyL (t) 1 — eLt (COSt — 7y, SIn t)
y=acr = QL=
ol (1) (77 + 1)e"ttsint
—t 1 —e "Lt (cost + vy sint
Pu(y) = a2 _ g 1o ™ (costpusind)
ol (—t) (77 + 1)e~7Ltsint

where m < t < t, being t the only value in (m,2mw)
such that c,on( ) = 0.

p~(t) =1 — e’ (cost — ysint)




Computing the half-return maps: the left one

In pa'rtz'cula}:z‘ué have P, (0) = ajaq, where

cost + yr sint — et 2(cost — cosh t)
Of() J— 5 - ~ B 2 - ~ > 0.
(77 + 1)sint (77 + 1)sint

Furthermore, the two first derivatives of map P,
satisfy

27L£
P/ (0)=0. P’(0) = < d lim P! (y) = —eL™.
L( ) ; L( ) a7 0’ an yg{}o L(y) €




Computing the half-return maps: the left one

: t
arp < 0 o e ——— S
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Y1 Y0
% |

It cannot be extended
as an involution
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Nag)




i N

The left boundary focus transition
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The left boundary focus transition

ar >0

—1
P
ar =0 )
ar <0
Pr(y)
i\ ar < 0 t
I i gl
ajp =
ar >0 yO
ar, >0
................................... ar =V _ - 050
ar, <0 —1




The boundary focus-saddle case

CLL:O

L —vr

L+7r

\_—— Stable limit cycle!




The boundary focus-saddle case

CLL:O

™YL —

L =g

L+9r

Pr(y)

° ° ° ’
- Homoclinic connection!




The boundary focus-saddle case

CLL:O

I —~vr

L+7r

Pr(y)

No periodic orbits!




The boundary focus-saddle case

Proposition Considering v;, > 0, —1 < yg < 0, ar, = 0,
ar < 0, and b = 0, the following statements hold.

(a)

(b)

If e < (1 —~gr)/(1 + vr), then there exists one stable
limit cycle surrounding the unstable boundary focus at the
origin and no homoclinic connections.

If et = (1 —vgr)/(1 + vr), then there exists one ho-
moclinic connection to the saddle and no periodic orbits
surrounding the boundary focus.

If ™~ > (1—vgr)/(1+vRr), then the system has no periodic
orbits and no homoclinic connections.



The boundary focus-saddle case

Proposition Considering v;, > 0, —1 < yg < 0, ar, = 0,
ar < 0, and b = 0, the following statements hold.

(a) If €2 < (1 —~vRr)/(1 4+ vRr), then there exists one stable
limit cycle surrounding the unstable boundary focus at the
origin and no homoclinic connections.

(b) If e = (1 — ~vr)/(1 4+ vRr), then there exists one ho-
moclinic connection to the saddle and no periodic orbits
surrounding the boundary focus.

(c) If ™~ > (1—vygr)/(14+7vR), then the system has no periodic
orbits and no homoclinic connections.



Perturbing the critical boundary focus-saddle case

—1<vp <0, ~L>0

A

™YL . —/YR
L +7r




Perturbing the critical boundary focus-saddle case

CLL:O




Perturbing the critical boundary focus-saddle case

CLL:O

b<0

T™L — _ — IR
L +7r

Two limit cycles!

Pr(y)




Persistence of homoclinic connections on a curve in the (ar,b)-plane

Theorem Considering —1 < yg <0, xr >0, -~ = %ln (%) > 0, the

following statements hold.

a) For 7 = 0, b = 0 the origin is an unstable boundary focus surrounded b
g y y
an homoclinic connection and there are no periodic orbits.

(b) The above homoclinic connection persists on the graph of a curve defined
by b = by(zy) in a neighborhood of the origin in the parameter plane

(xr,,b). The local expansion of the function by (xy ) is given by

b
HC
1 + ~%) sinh (7
( L)Sl ( L):z:'2 N

b=by(xr) =2vrxL —

2T R L[

(c) There exists 6* > 0 such that if || < §* then in passing from b = by (x )
to b < by(xy) we pass from the homoclinic orbit to a stable crossing
periodic orbit.




Persistence of homoclinic connections on a curve in the (ar,b)-plane

Theorem Considering —1 < yg <0, xr >0, -~ = %ln (%) > 0, the

following statements hold.

a) For 7 = 0, b = 0 the origin is an unstable boundary focus surrounded b
g y y
an homoclinic connection and there are no periodic orbits.

(b) The above homoclinic connection persists on the graph of a curve defined
by b = by(zy) in a neighborhood of the origin in the parameter plane
(xr,,b). The local expansion of the function by (xy ) is given by

b
HC
1 + ~%) sinh (7
( L)Sl ( L):z:'2 N

b=by(xr) =2vrxL —

2£UR ° I,

(c) There exists 6* > 0 such that if || < §* then in passing from b = by (x )
to b < by(xy) we pass from the homoclinic orbit to a stable crossing

odic orbit, T
pERREE O A big limit cycle!



Two small limit cycles can bifurcate after some (ar,b)-perturbation

Proposition Assume that v, > 0, xtgp > 0, Yy < 0. Then there exist 4 > 0
and two continuous functions f1(zy) and B(zy) with £1(0) = B2(0) = 0 and
satisfying

Bi(zr) < Ba(zr) <0

for —0 <x; <0, such that for the parameter sector defined by
Bi(xr) <b< Pa(xrr) and —0 < zy <0 the system has two small nested
crossing periodic orbits. Moreover, we have

b

eVL'Esinf
51($L) = —

—7
and

YL ( Sinh(’thM)) 9
— 1 — 0,

where t,; is the only solution of tanh(ypt) = vz tant in the interval (7, 37/2).



THREE limit cycles can bifurcate after some (ar,b) -perturbation

b
HC
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. _ar
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THREE limit cycles can bifurcate after some (ar,b) -perturbation

b
HC
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YL = Az



THREE small limit cycles can bifurcate after some(ar,b) -perturbation

o, y H C

+ the big limit cycle from HC L



THREE limit cycles can bifurcate after some (ar,b)-perturbation

Final theorem Considering

—1<~vpr <0, zr>0, ~v=—1In
70

the following statement holds.

1 (1—’73

There exist 6 > 0 and two continuous functions (i(xy) and

Bo(xy,) with £1(0) = B2(0) = 0 and satisfying

Bi(xr) < Ba(xr) <0

b

HC

=

L

for —0 < xy <0, such that for the parameter sector defined
by B1(xr) < b < B2(xp) and —0 < xp, < 0 the system has three
limit cycles: two small nested crossing periodic orbits surround-
ing the attractive sliding set, and a third big limit cycle sur-

rounding them.




The parametric region with three limit cycles:
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The parametric region with three limit cycles:
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Flight times in a representative section of the bifurcation set
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Three small limit cycles can bifurcate after some (ar,b) -perturbation

Final theorem Considering

1 1 —
—1 <~vp <0, xr >0, ’}/L:—ln( VR)>O,
70

the following statement holds.
There exist § > 0 and two continuous functions £i(xy) and

Bo(xy,) with £1(0) = B2(0) = 0 and satisfying b

Bi(xr) < Ba(xr) <0 4 xL

for —0 < xy <0, such that for the parameter sector defined
by B1(xr) < b < B2(xp) and —0 < xp, < 0 the system has three
limit cycles: two small nested crossing periodic orbits surround-
ing the attractive sliding set, and a third big limit cycle sur-
rounding them.




Conclusions

® The study of all possible dynamics even in planar discontinuous
PWL systems with two zones is a formidable challenge. Some
headway is made in this problem thanks to a canonical form with
fewer parameters.

® Thanks to the features of the boundary focus, we have shown
how is possible to obtain three limit cycles, combining local and
global bifurcations.

® A conjecture to prove or disprove: the maximum number of
limit cycles to be found in the family is exactly three.
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Concurrent homoclinic bifurcation and Hopf bifurcation
for a class of planar Filippov systems ™

Liping Li®*, Lihong Huang ¢

The planar Filippov system considered in this paper is modeled by

(@ +n,byu+byu?+¢&t), ifv>0,

Uu,v)= ~ B - .
(—@o+aju+a,v—n,bju+e7), ifv <0,

is shown that two limit cycles can appear from the two different kinds of bifurcation in
planar Filippov systems.
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Abstract. This paper presents an analysis on the appearanae of limit cycles in planar
Filippov system with two linear subsysterns separated by a straight ine. Under the
restriction that the orbits with points in the sliding and escaping regions are not con-
sidered, we provide firstly a topologically equivalent canonical form of saddle-focus
dy'rnm.ic with five paramefers by using some convenient transformations of variables
and parameters. Then, based on a very available fourth-order series ex pansion of the m-
turn map near an invisible parabolic type tangency point, we show that three crossing
limit cycles surrounding the sliding set can be bifurcated from generic codimension-
three singularities of planar dscontinuous saddle-focus system. Our work improves
and extends some existing results of other researchers.



