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In this work, we consider a class of discontinuous piecewise linear
differential systems in R3 with two pieces separated by a plane and
we investigate the existence of limit cycles and invariant surfaces.

In this way, we give conditions for the existence of differential
systems having:
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A unique limit cycle.
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A unique one-parameter family of periodic orbits.
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Scrolls, a unique invariant cylinder or infinitely many
invariant cylinders.
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Notes

We note that the existence of the one-parameter family of periodic
orbits is an analogous result to the Lyapunov Center Theorem
related to smooth vector fields. See, for instance (Buzzi and Lamb,
[2]), (Gouzé and Sari, [8]), (Jacquemard and Teixeira [9]) and, (Li
and Shi, [11]).

This work is an extension of (Medrado and Torregrosa, [14]) and in
our approach we use essentially the Theorem of Rolle for
dynamical systems (see (Khovanskii, [10])) to address the problem
of to show the existence of limit cycles or invariant surfaces to find
zeroes of intersection of algebraic curves.
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About this thema I

The discontinuous piecewise linear differential systems plays an
important role inside the theory of nonlinear dynamical systems. In
the models of physical problems or processes is natural to use the
piecewise-smooth dynamical systems when their motion is
characterized by smooth flow and eventually, interrupted by
instantaneous events (see (Brogliato, [1]), (Jong and Gouzé,[4]),
(Gouzé and Tari, [7])).
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About this thema II

There are many non-smooth processes in this context, for example,
impact, switching, sliding and other discrete state transitions.
They are used also in nonlinear engineering models, where certain
devices are accurately modeled by them, see for instance (di
Bernardo et al, [5]), (Makarenkov and Lamb, [13]), (Ponce, Ros
and Vela, [17]) and, references quoted in these.
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About this thema III

In (Ponce et al, [3]), (Ponce, Ros and Vela, [15] and [16]), the
authors consider a family of continuous piecewise linear systems in
R3 and characterize limit cycles and cones foliated by periodic
orbits. In (Lima and Llibre, [12]) is proved the existence of limit
cycles and invariant cylinders for a class of discontinuous vector
field in dimension 2n.
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Sewing Piecewise Linear Differential Systems

In this work, we deal with piecewise linear vector field

Z (x) =

{
X+(x) = A+(x) + B+, if x ∈ Σ+ ⊂ R3,
X−(x) = A−(x) + B−, if x ∈ Σ− ⊂ R3,

(1)

where A±,B± are matrices, Σ = h−1(0) with h(x1, x2, x3) = x3

and Σ± = ±h > 0. We observe that R3 = Σ ∪ Σ+ ∪ Σ−.
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Sewing Piecewise Linear Differential Systems

We consider Σ = ΣS ∪ ΣT where

Sewing set : ΣS = {p ∈ Σ;X+h(p)X−h(p) > 0, }

Tangency set : ΣT = {p ∈ Σ;X±h(p) = 0 and ± (X±)2h(p) < 0}
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Tangency straight lines

Lemma

Let Z = (X+,X−) be defined in (1) with LX± the tangency
straight lines of X±. If X+h(p)X−h(p) ≥ 0, for all p ∈ Σ then the
tangency straight lines are the same, i.e., LX+ ≡ LX− .
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Canonical form of Z = (X+,X−)

X+ = (a+x + b+z , c+y + d+z − 1, y),
X− = (a−x + b−z + m, c−y + d−z + 1, y).

(2)

The associated eigenvalues of X+ and X− are λ±1 = a±,

λ±2 = (c±+
√

(c±)2 + 4d±)/2 and, λ±3 = (c±−
√

(c±)2 + 4d±)/2.

We define seven types:

(i) Sa If λ±2 λ
±
3 < 0.

(ii) No If λ±2 , λ
±
3 ∈ R and λ±2 λ

±
3 > 0.

(iii) Nd If λ±2 = λ±3 .

(iv) Fo If λ±2 , λ
±
3 ∈ C and Re(λ±2 ) Im(λ±2 ) 6= 0.

(v) Ce If λ±2 , λ
±
3 ∈ C, Re(λ±2 ) = 0 and, Im(λ±2 ) 6= 0.

(vi) D1 If λ±2 λ
±
3 = 0 and (λ±2 )2 + (λ±3 )2 6= 0.

(vii) D2 If (λ±2 )2 + (λ±3 )2 = 0.
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Definition

We say that the piecewise vector field Z = (X+,X−) is of type
(T+,T−) for T± ∈ {Sa, No, Nd, Fo, Ce, D1, D2}, if X± is of
type T±.

We observe that the type (T+,T−) is equal to (T−,T+) i.e.,
there is an equivalence between (T+,T−) and (T−,T+), for
details see [6].
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Main results - Theorem A. I

Let Z = (X+,X−) be a piecewise linear vector field of type
(T+,T−). The following statements hold.

1 The vector field Z has scrolls if only if is true one of the
following conditions:

1 T+ = Sa and T− ∈ {Sa, No, Nd, Fo, Ce, D1};
2 T+ = No and T− ∈ {No, Nd, Fo, Ce, D1, D2};
3 T+ = Nd and T− ∈ {Nd, Fo, D1, D2};
4 T+ = Fo and T− = D1;
5 T+ = D1 and T− ∈ {D1,D2};

with κ2 + λ2 6= 0 and κλ ≥ 0, or 1 +α2λ/κ ≤ 0 and κλ < 0.
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Main results - Theorem A. II

2 The vector field Z has at most a unique invariant cylinder if
only if is true one of the following conditions:

1 T+ = Sa and T− ∈ {Sa, No, Nd, Fo, Ce, D1, D2};
2 T+ = No and T− ∈ {No, Nd, Fo, Ce, D1};
3 T+ = Nd and T− ∈ {Nd, Fo, Ce, D1};
4 T+ = Fo and T− ∈ {Fo, Ce, D1, D2};
5 T+ = Ce and T− = D1;

with κλ < 0 and 1 + α2λ/κ > 0.
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Main results - Theorem A. III

3 The vector field Z has infinitely many invariant cylinders if
only if κ = λ = 0 and is true one of the following conditions:

1 T+ = Sa and T− ∈ {Sa, No, Nd, Fo, Ce, D1};
2 T+ = No and T− ∈ {No, Nd, Fo, Ce, D1};
3 T+ = Nd and T− ∈ {Nd, Fo, D1};
4 T+ = Ce and T− ∈ {Ce, D2};
5 T+ = D1 and T− = D1;
6 T+ = D2 and T− = D2.

The parameters κ and λ depend on the parameters a±, b±, c±, d±

and m of Z . These parameters are given in the Tables.
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Main results – Theorem B.

Let Z = (X+,X−) be a piecewise linear vector field with X+ and
X− defined in (2). The following statements hold.

1 If (a+)2 + (a−)2 = 0 or if Z has no invariant cylinder then
there are not limit cycles.

2 If (a+)2 + (a−)2 6= 0 and Z has at most a unique invariant
cylinder then Z has at most a unique limit cycle in this
cylinder.

3 If (a+)2 + (a−)2 6= 0, a+a− ≥ 0 and Z has infinitely many
invariant cylinders then there is an invariant surface formed of
periodic orbits, where each periodic orbit is contained in an
invariant cylinder.
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Flow of X of a straight line at Σ is a straight line at Σ too

Proposition

Consider the boundary value problem ẋ = Y±(x) = P x +Q± with
p0 = (x(0), y(0), z(0)) = (x0, y0, 0),

P =

 γ 0 δ
0 σ ψ
0 1 0

 and Q± =

 M
±1
0

 ,

where γ, δ, σ, ψ,M ∈ R.
Let ϕ±(t, p0) be the solutions of ẋ = Y±(x) and consider the
straight line r0 = {(x , y , z) ∈ R3 : y = y0, z = 0}. Let τ± ∈ R/{0}
such that z(τ±) = 0 then ϕ±(τ±, r0) is a straight line parallel to r0
given by r1 = {(x , y , z) ∈ R3 : y = y1, z = 0}.
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Proof.

The general solution ϕ±(t, (x0, y0, 0)) is

ePt x0 + ePt
∫ t

0
e−Pη Qdη.

Observe that the matrix ePt has zeroes at positions (2, 1) and
(3, 1). So, we can write the solution ϕ±(t, p0) by

x±(t) = eγt x0 + f ±12y0 + f ±13 ,
y±(t) = f ±22y0 + f ±23 ,
z±(t) = f ±32y0 + f ±33 ,

(3)

where f ±ij = f ±ij (t, γ, δ, σ, ψ,M), for i , j = 1, 2, 3.

Now, as the Poincaré Application is well defined, there is a τ±(y0)
such that z±(τ±(y0)) = 0. Then y1 = y±(τ±(y0)) depends only of
y0. This implies that all orbits of Y± with origin at r0 intersect
Σ = {z = 0} after time τ±(y0), i.e., ϕ±(τ±(y0), r0) is the straight
line r1.

Freitas, Medrado Sewing Piecewise linear differential systems



Invariant cylinders I

Corollary

Consider the boundary value problems

(A) :


ẋ = X+(x),
x(0) = (x0, y0, 0),
x(τ) = (x1, y1, 0),

(B) :


ẋ = X−(x),
x(0) = (x̃1, ỹ1, 0),
x(τ) = (x̃0, ỹ0, 0).

(4)

where X+ and X− are given by (2). If y0 = ỹ0 and y1 = ỹ1 then
there is an invariant cylinder for the vector field Z = (X+,X−).
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Invariant cylinders II

Proof.

Let ϕ±(t, p) be the solutions of (A) and (B) respectively and the
straight lines r0 = {(x , y , z) ∈ R3 : y = y0, z = 0} and
r1 = {(x , y , z) ∈ R3 : y = y1, z = 0}. From Proposition 0.1, we
have that ϕ+(r0, τ) = r1 and ϕ−(r1, τ) = r0. So, we obtain an
invariant cylinder.
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Theorem A - Sketch of the proof for the case (Sa, Sa). I

In order to prove these theorems, when the return applications is
defined, we make a suitable substitution of variables and we
address the proof to determine intersection points of curves which
are associated to existence of invariant cylinders. For to determine
the number of intersection points between these curves, we use
also Theorem 0.3 proved by Kovanskii([10]).
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Theorem A - Sketch of the proof for the case (Sa, Sa). II

Theorem

(Kovanskii, [10]) Let X be a C 1 planar vector field without
singular points in an open region Ω ⊂ R2. If a C 1 curve, γ ⊂ Ω,
intersects an integral curve of X at two points then in between
these points, there exists a point of tangency between γ and X .
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Theorem A - Sketch of the proof for the case (Sa, Sa). III

We consider X+ of type Sa and we solve it using the conditions:

x(0) = (x0, y0, 0) and x(τ) = (x1, y1, 0).

Doing (ρ, v ,w) = (ea
+τ , e−(c++s)τ/2, e(c+−s)τ/2) then we get

v = ρα1 ,w = ρα2 and w = vα, where α1 = −(c+ + s)/2a+,
α2 = (c+ − s)/2a+, s =

√
(c+)2 + 4d+, α = (s − c+)/(s + c+).

Moreover,

w =
c+y1 − sy1 − 2

c+y0 − sy0 − 2
, v =

c+y0 + sy0 − 2

c+y1 + sy1 − 2
,

ρ =
4(a+)3x1 − 4(a+)2c+x1 + a+(c+)2x1 − a+s2x1 + 4a+b+y1 − 4b+

4(a+)3x0 − 4(a+)2c+x0 + a+(c+)2x0 − a+s2x0 + 4a+b+y0 − 4b+
.

(5)
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Theorem A - Sketch of the proof for the case (Sa, Sa). IV

Doing the same to X−, we get that doing

(ξ,V ,W ) = (ea
−τ , e−(c−+S)τ/2, e−(−c−+S)τ/2)

then we get V = ξβ1 ,W = ξβ2 and W = V β, where
β1 = −(c− + S)/2a−, β2 = (c− − S)/2a−,S =

√
(c−)2 + 4d−,

β = (S − c−)/(S + c−). Moreover,

W =
Sỹ0 − c−ỹ0 − 2

Sỹ1 − c−ỹ1 − 2
, V =

Sỹ1 + c−ỹ1 + 2

Sỹ0 + c−ỹ0 + 2
,

ξ =
(S2+4a−(c−−a−))m+(S2+c−(4a−−c−)−4(a−)2)a−x̃0−4b−(a−ỹ0+1)
(S2+4a−(c−−a−))m+(S2+c−(4a−−c−)−4(a−)2)a−x̃1−4b−(a−ỹ1+1)

.

(6)
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Theorem A - Sketch of the proof for the case (Sa, Sa). V

From the boundary value problem, follows that

α > 1, 0 < v ,w < 1 and w = vα.

Expliciting x0, y0, y1 in (5) we get

y0 = −(−1 + α)(αv − vw − α + v)

c+(vw − 1)α
,

y1 = −(−1 + α)(αvw − αw − w + 1)

c+(vw − 1)α
,

and x1 = ρx0 + B, where

B =
4b+(a+ρy0 − a+y1 − ρ+ 1)

a+(4(a+)2 − 4a+c+ + (c+)2 − s2)
.
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Theorem A - Sketch of the proof for the case (Sa, Sa). VI

For X− expliciting x̃1 in (6), we get

W =
Sỹ0 − c−ỹ0 − 2

Sỹ1 − c−ỹ1 − 2
,

V =
Sỹ1 + c−ỹ1 + 2

Sỹ0 + c−ỹ0 + 2
and x̃1 =

1

ξ
x̃0 + C ,

where C is

4a−b−(ξỹ1 − ỹ0) + (ξ − 1)m(4(a−)2 − 4c+4b− − a− − (S2 − (c−)2))

a−ξ(c− − 2a− + S)(−c− + 2a− + S)
.
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Theorem A - Sketch of the proof for the case (Sa, Sa). VII

Substituting ỹ0 = y0 and ỹ1 = y1 in the expressions of V ,W , we
consider in the region ∆ = (0, 1)× (0, 1) contained in the plane
vw , the curves

Cf = {(v ,w) ∈ ∆; f (v ,w) = w − vα = 0},
CF = {(v ,w) ∈ ∆;F (v ,w) = W − V β = 0}, (7)

with

V =
Γ1vw + Γ2w + Γ3

Γ4vw + Γ5v + Γ6
e W =

Γ7vw + Γ8v + Γ9

Γ10vw + Γ11w + Γ12

where Γi = Γi (α, β, c
+, c−).
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Theorem A - Sketch of the proof for the case (Sa, Sa). VIII

Thus, for each point of intersection of the curves Cf and CF , the
piecewise linear vector field Z has an invariant cylinder. Note that
the curve CF does not depend of a+ or a−. Consequently, when
a+a− = 0 the number of invariant cilinders is the same.
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Theorem A - Sketch of the proof for the case (Sa, Sa). IX

Let X̃ = (v , αw) be a vector field defined in ∆. So, Cf is an
integral curve of X̃ . Consider the following system

{F (v ,w) = 0,∇F (v ,w)· X̃ = 0}. (8)

We get ∇F (v ,w)· X̃ = f1(v ,w)f2(v ,w) where

f1(v ,w) =
y0ŷ0y1ŷ1(β + 1)(α + 1)β(c−)2

D̂
,

f2(v ,w) = κw(v − 1)2 + λv(w − 1)2,

with

κ = α2(αc− + βc+ − c+ − c−)(αβc− − βc+ − βc− + c+),

λ = (αβc+ − αc+ − αc− + c−)(αβc+ + αβc− − αc+ − βc−).
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Theorem A - Sketch of the proof for the case (Sa, Sa). X

The system (8) is equivalent to {F (v ,w) = 0, f2(v ,w) = 0}. We
consider

Cf2 = {(v ,w) ∈ ∆; f2(v ,w) = 0.}

Thus (v ,w) ∈ ∆ ∩ Cf ∩ Cf2 if and only if (v ,w) satisfies

{w = vα, κw(v − 1)2 + λv(w − 1)2 = 0},

or
λv(vα − 1)2

κvα(v − 1)2
+ 1 = 0.

This equation admits one zero for v ∈ (0, 1) if 1 + α2λ/κ > 0,
otherwise it does not admit zeros in (0, 1).
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Theorem A - Sketch of the proof for the case (Sa, Sa). XI

Proof of statement (1) of Theorem A. κ2 + λ2 6= 0 and κλ = 0.

Suppose that κ 6= 0 and λ = 0. So,

f2 = κw(v − 1)2.

Assume that Cf and CF intersect at a point p1 in ∆. Follows from
Khovanskii that there is p2 ∈ ∆ that is a solution of
{F = 0, f2 = 0}, but this is a contradiction since f2 6= 0 in ∆.

Therefore there are no invariant cylinders and consequently there
are no periodic orbits, i.e., the differential system has a scroll.
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Theorem A - Sketch of the proof for the case (Sa, Sa). XII

p1

p2

(1, 1)

Cf

CF

v

w
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Proof of statement (2) of Theorem A: (Sa, Sa). I

Now, κλ < 0 and 1 + α2λ/κ > 0.
Assume that Cf and CF intersect at two points p1 and p2 in ∆.
From Khovanskii there are p3, p4 ∈ ∆ which are solutions of

{F = 0, f2 = 0},

i.e., p3, p4 ∈ Cf2 , but this is a contradiction since that Cf2

intersects Cf at most at one point.

So, Z has at most a unique invariant cylinder.
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Proof of statement (2) of Theorem A: (Sa, Sa). II

Cf2 Cf

CF

(a) (b)

Cf

Cf2

CF

p1

p2

p3

p4
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Proof of statement (2) of Theorem A: (Sa, Sa). III

Finally, if κ = λ = 0, then

∇F (v ,w)· X̃ ≡ 0

and thus the curves Cf and CF are coincident. In this case there is
a continuous of invariant cylinders.
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Theorem B (Sa, Sa): Sketch of the proof. I

1 If Z has no invariant cylinder then do not exist limit cycles.

2 As CF does not depend of a+ or a−, the number of invariant
cylinders remains the same, independently of the configuration
of a+ and a−.

3 From boundary value problems (4) (X+ and X− ) and from
(3) of the Proposition 0.1, we obtain respectively

x1 = x0 + ηy0 + µ and x̃1 = x̃0 + η̃ỹ1 + µ̃.

Here, we obtain (η, µ) and (η̃, µ̃) directly from Proposition 0.1
replacing

(γ, δ,M, σ, ψ,±1) = (a+, b+, 0, c+, d+,−1) and

(γ, δ,M, σ, ψ,±1) = (a−, b−,m, c−, d−, 1)
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Theorem B (Sa, Sa): Sketch of the proof. II

Suppose that (a+)2 + (a−)2 = 0.

Fixing an invariant cylinder ỹ0 = y0 and ỹ1 = y1, we get that the
return times τ and τ are also fixed. Thus, in this invariant cylinder,
the number of limit cycles is given by the intersections of the
straight lines r± given by

r+ : x1 = x0 + ηy0 + µ with r− : x̃1 = x̃0 − (η̃y1 + µ̃),

where x̃0 = x0 and x̃1 = x1.
Doing

(B,C ) = (ηy0 + µ,−η̃y1 − µ̃)

we obtain that either all solutions are closed in the cylinder, if
B = C , or there is no closed solutions in this cylinder when B 6= C .
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Theorem B (Sa, Sa): Sketch of the proof. III

Suppose that (a+)2 + (a−)2 6= 0 and Z at most one invariant
cylinder.
Fixed the invariant cylinder, the number of limit cycles is given by
the intersections of

x1 = ρx0 + B if a+ 6= 0 (or x1 = x0 + B if a+ = 0)

and

x1 = x0/ξ + C if a− 6= 0 (or x1 = x0 + C if a− = 0),

where ρ = ea
+τ , ξ = ea

−τ , (B,C ) are obtained as above and
(B,C ) obtained in the proof of Theorem A. Thus, there is at most
one limit cycle.

Freitas, Medrado Sewing Piecewise linear differential systems



Theorem B (Sa, Sa): Sketch of the proof. IV

Now, (a+)2 + (a−)2 6= 0, a+a− ≥ 0 and Z has infinitely many
invariant cylinders.
Suppose initially a+a− > 0.
We will show that in each invariant cylinder there is a unique
isolated periodic orbit.

Indeed, in each cylinder, the orbit periodic is given by the
intersection of the straight lines r± given by

r+ : x1 = ρx0 + B and r− : x1 =
1

ξ
x0 + C .

These straight lines has a unique intersection point provided that
ρ 6= 1/ξ. Note that ρ = 1/ξ ⇔ τ = −a−τ/a+, where τ and τ are
positives.
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Theorem B (Sa, Sa): Sketch of the proof. V

With the hypothesis of that a+a− > 0, the relation τ = −a−τ/a+

can not be satisfied and thus ρ 6= 1/ξ.

The intersection point in each cylinder is given by

x0 =
C − B
1
ξ − ρ

e x1 = ρ
C − B
1
ξ − ρ

+ B.

Varying continuously the cylinders, the terms x0 and x1 also range
continuously, and we obtain one invariant surface formed of
periodic orbits, where each orbit is an invariant cylinder.
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Theorem B (Sa, Sa): Sketch of the proof. VI

If a+ = 0 and a− 6= 0, the periodic orbit in each cylinder is given
by intersection of straight lines

x1 = x0 + B and x1 =
1

ξ
x0 + C .

The case a+ 6= 0 and a− = 0 follows analogously.
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