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Introduction

Discontinuous oscillations

In Control theory the discontinuous oscillations phenomena have been
modeled by the introduction of discontinuities in semi-linear vector fields,
using sign functions.
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Discontinuous oscillations

In Control theory the discontinuous oscillations phenomena have been
modeled by the introduction of discontinuities in semi-linear vector fields,
using sign functions.

These systems are called relay systems and they have gain great
importance to understand the discontinuous behaviour, based on the
escaping, sliding and sewing regions and the flow on the discontinuity set
using the Filippov convention.

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 2 / 41



Introduction

Discontinuous oscillations

In Control theory the discontinuous oscillations phenomena have been
modeled by the introduction of discontinuities in semi-linear vector fields,
using sign functions.

These systems are called relay systems and they have gain great
importance to understand the discontinuous behaviour, based on the
escaping, sliding and sewing regions and the flow on the discontinuity set
using the Filippov convention.

It will be introduced some definitions and derived some results of a
piecewise smooth mechanical oscillator.
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Introduction

Piecewise Continuous Vector Field-General Definitions

(i) Σ ⊂ R
n a C∞ (n − 1)-dimensional surface.

(ii) p ∈ Σ and h : (Rn,Σ) → (R, 0) a C∞ local implicit representation of
Σ at p with dh(p) 6= 0.

(iii) Σ+ = {x ∈ R
n; h(x) > 0} and Σ− = {x ∈ R

n; h(x) < 0} (note that
Σ represents the common boundary separating Σ+ and Σ−.)
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Introduction

(iv) X r the set of all germs in p of C r v.f. on (Rn, p) with the
C r -topology (r big enough).

(v) G r the set of all germs in p of v.f. X on R
n satisfying

X (q) =

{

X+(q) q ∈ Σ+,
X−(q) q ∈ Σ−,

X+,X− ∈ X r .
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Introduction

Define the functions

Xih(p) =< Xi(p),▽h(p) >,

X 2
i h(p) =< Xi(p),▽(Xih)(p) >, ...

X k

i h(p) =< Xi (p),▽(X k−1
i

h)(p) >, k ≥ 2 for i ∈ {+,−}.

Consider Gr = X r × X r .

So given X = (X+,X−) ∈ Gr we distinguish the following regions in Σ
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Introduction

(a) Sewing Region Σc : if X+h(p)X−h(p) > 0.

(b) Escaping Region Σe : if X+h(p) > 0 and X−h(p) < 0.

(c) Sliding Region Σs : if X+h(p) < 0 and X−h(p) > 0.

H0

X-(p)

X+(p)

Vf(p)

H0

X-(p)

X+(p)

Vf(p)

H0

X-(p)

X+(p)

Vf(p)

Sewing Escaping Sliding
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Introduction

The solution of X through p ∈ Σs ⊂ Σ follows the orbit of the v.f.
Xs = Xs(X+,X−) (sliding vector field). This v.f. is defined following the
Fillipov convention (see [Filippov]).
Xs is tangent to Σ and is defined at p ∈ Σ by the vector Xs(p) = m − p

where m is the point where the segment joining p + X+(p) and p + X−(p)
is tangent to Σ.

Observe that if X+(p) and X−(p) are linear dependent then p is a critical
point of Xs (pseudo-equilibrium of X ).
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Introduction

Remark

All ”curves” in Σ separating the above-named regions are constituted by
points where X+ or X− are tangent to Σ (singularities of X ).

(i) p ∈ Σ is an Σ-singular (resp. Σ-regular) point of X+ ∈ X r if
X+h(p) = 0 (resp. X+h(p) 6= 0). We denote ∂Σ+

c the set of singular
points of X+.

(ii) p ∈ Σ is a fold (resp. cusp) point of X+ if X+h(p) = 0 and
X 2
+h(p) 6= 0 (resp. X+h(p) = 0 = X 2

+h(p) and
{dh(p), d(Xh)(p), d(X 2

+h(p))}) are linearly independent.

A fold singularity p ∈ Σ is visible (resp. invisible) when X 2
+h(p) > 0, (resp.

X 2
+h(p) < 0.)

Similar definitions are derived for the v.f. X−.
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Problem

Schematic Representation of the problem

Consider a block connected to a fixed linear-elastic spring on a moving
conveyor belt, subject to Coulomb friction (Coulomb friction) and a
periodic external force.
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Problem

The system equations

This system is represented by the differential equations:

my ′′ + ky = −µN sgn (y ′ − rθ′) ,
Jθ′′ + bθ′ = µrN sgn (y ′ − rθ′) + µN sin(Ωτ),

parameters

m: mass of block; k : elastic constant; r : turn radius; b: viscous friction in
the conveyor belt-engine system ; M: engine torque; J: system inertia
moment; N: normal force; and µ: Coulomb friction constant.

variables

y : block displacement ; θ: rotation angle.

′: denotes derivative with respect to the time τ.
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Problem

After the change of variables

x1 =
y

r
, x2 =

(

y ′

r
− θ′

)
√

m

k
, x3 = θ, x4 = θ′

√

m

k

and the time scaling t = τ
√

k

m
, we obtain

ẋ1 = x2 + x4,
ẋ2 = −x1 + ςx4 − ηsgn (x2)− sin(s),
ẋ3 = x4,
ẋ4 = −ςx4 + sgn (x2) + sin(s),
ṡ = ω,

(1)

where η = 1 + J

r2m
; ς = b

J

√

m

k
; ω, ς > 0.
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Problem

As the x3-variable does not appear in the first, second, fourth and fifth
equations of system (1), the dynamics of this system can be easily
obtained from the dynamics of the four dimensional reduced system

ẋ1 = x2 + x4,
ẋ2 = −x1 + ςx4 − ηsgn (x2)− sin(s),
ẋ4 = −ςx4 + sgn (x2) + sin(s),
ṡ = ω,

(2)
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Main Results

Theorem 1

Consider system (2) with parameter values (ς, η, ω) satisfying ς, η, ω > 0.
Then
i) For ς = cot (π/2ω) system (2) with η given by

η(ω) =
ω2

ω2 + csc2
(

π

2ω

)

− 1
− tanh

(

π cot
(

π

2ω

)

2ω

)

,

and ω ∈
(
⋃

n∈N (1/(2n + 1), ωn)
)

∪ (1, ω∗) admits an one-turn

crossing periodic orbit through the point (0, 0, z0, 3π/2) ∈ Σ+
c with

z0 = −
cot
(

π

2ω

)

ω2 + cot2
(

π

2ω

) − tan
( π

2ω

)

tanh

(

π cot
(

π

2ω

)

2ω

)

, (3)

if condition (18) is satisfied. Moreover, in this case, the point
(0, 0, z0, 3π/2) is a visible fold for system (2) and this system
performs a codimension-one sliding bifurcation in such a way that a
small perturbation of ς such that ς > cot (π/2ω) the associated
system admits a crossing-sliding periodic orbit.
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Main Results

ii) For ς < cot (π/2ω) system (2) with

η(s0, ς, ω) =

− sin
(

π

ω

)

(

ς sin(s0)−ω cos(s0)
ς2+ω2 −

tanh(πς
2ω )

ς

)

+ cos
(

π

ω

)

− 1

cos
(

π

ω

)

− 1
, (4)

where s0 ∈ (s̄0, ŝ0) is such that, 3π/2 ∈ (s̄0, ŝ0) and η > 0, admits an
one-turn crossing periodic orbit through the point (0, 0, z0, s0) with

z0 =
ς sin(s0)− ω cos(s0)

ς2 + ω2
−

tanh
(

πς

2ω

)

ς
, (5)

if condition (18) is satisfied. Moreover, for any s̄0 and for ŝ0
sufficiently close to 3π/2 system (2) performs a codimension-one
sliding bifurcation for s0 = s̄0 and s0 = ŝ0,
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Main Results

where

s̄0 = 2π − arccos

(

−
a+b++

√

c2+(−a2++b2
++c2+)

b2
++c2+

)

,

ŝ0 = 2π − arccos

(

−a+b++
√

c2+(−a2++b2
++c2+)

b2
++c2+

)

,

(6)

with

a+ =





cot
(

π
2ω

)

ς
− 1



 tanh

(

πς

2ω

)

− 1, b+ =
ω

(

cot
(

π
2ω

)

− ς
)

ς2 + ω2
, c+ = −

ς cot
(

π
2ω

)

+ ω2

ς2 + ω2
.

This bifurcation is such that for a small perturbation of ς doing
ς > cot (π/2ω) the associated system admits a crossing-sliding periodic
orbit.

iii) For ς > cot (π/2ω) system (2) does not admit one-turn crossing
periodic orbits.

iv) For η ≥ 1 system (2) does not admit one-turn crossing periodic orbits.
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Main Results

Theorem 2

Consider system (2) with ς, η, ω > 0. Under the conditions

(η + 1)ω2 + (η − 1)ς2 − 2 ≥ 0 η ∈ (0, 1),

(η + 1)ω2 + (η − 1)ς2 − 2 ≤ 0 η > 1,
(7)

this system admits a sliding periodic orbit

ϕs(t) = (x1(t), 0, x4(t), ωt + s0), (8)

where

x1(t) = −
(η−1)(ςω(η−1) cos(ωt+s0)+(ηω2−1) sin(ωt+s0))

ς2ω2(η−1)2+(ω2η−1)2
,

x4(t) =
(η−1)ω(ςω(η−1)ω sin(ωt+s0)+(ηω2−1) cos(ωt+s0))

ς2ω2(η−1)2+(ω2η−1)2
.
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Main Results

In both cases, when (η + 1)ω2 + (η − 1)ς2 − 2 = 0 the periodic orbit is
tangent to the boundary of the sliding region Σs at the points
ϕs(t+) ∈ ∂Σ+ and ϕs(t−) ∈ Σ− where t+ and t− are

t+ = arccos
(

− a cos(s0)+c sin(s0)√
a2+b2

)

,

t− = arccos
(

a cos(s0)+c sin(s0)√
a2+b2

)

,

with a = ς(η − 1)ω(ω2 − 1), b = ς2(η − 1)2ω2 + (ηω2 − 1)2 > 0 and
c = (ω2 − 1)(ηω2 − 1).
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Main Results

In both cases, when (η + 1)ω2 + (η − 1)ς2 − 2 = 0 the periodic orbit is
tangent to the boundary of the sliding region Σs at the points
ϕs(t+) ∈ ∂Σ+ and ϕs(t−) ∈ Σ− where t+ and t− are

t+ = arccos
(

− a cos(s0)+c sin(s0)√
a2+b2

)

,

t− = arccos
(

a cos(s0)+c sin(s0)√
a2+b2

)

,

with a = ς(η − 1)ω(ω2 − 1), b = ς2(η − 1)2ω2 + (ηω2 − 1)2 > 0 and
c = (ω2 − 1)(ηω2 − 1).

Moreover, system (2) performs an adding-sliding bifurcation in such a way
that under small perturbations of the parameters such that
(η − 1)

(

(η + 1)ω2 + (η − 1)ς2 − 2
)

> 0 system (2) admits an
adding-sliding periodic orbit. It is an orbit visiting Σs , Σ+ and Σ− with
small portion in Σ±.
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Propositions and General Results

Properties

Proposition: System (2) admits:

i) a symmetry given by R(x1, x2, x4, s) = (−x1,−x2,−x4, s + π);

ii) a local first integral given by

G(x1, x2, x4, s) =

{

G+(x1, x2, x4, s) = (x1 − (1− η))
2
+ (x2 + x4)

2 if x2 > 0,

G
−
(x1, x2, x4, s) = (x1 + (1− η))

2
+ (x2 + x4)

2 if x2 < 0.
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Propositions and General Results

Observe that system (2) is analytic restricted to each one of the sets

Σ± = {x = (x1, x2, x4, s) ∈ R
3 × T

1; ±x2 > 0}. (9)

Moreover it has a unique discontinuity surface (called switching manifold)
given by

Σ = {x = (x1, x2, x4, s) ∈ R
3 × T

1; x2 = 0} = h−1(0), (10)

where h is the real function defined in R
3 × T

1 by h(x1, x2, x4, s) = x2.
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Propositions and General Results

Σ can be split into the following way:

i) The sewing region given by Σc = {x ∈ Σ; | −x1 + ςx4 − sin(s) |> η}
with Σc = Σ+

c ∪ Σ−
c where

i.1) Σ+
c
= {x ∈ Σ; −x1 + ςx4 − sin(s) > η} where the vector field points

away from Σ in Σ+ and toward Σ in Σ−;
i.2) Σ−

c
= {x ∈ Σ; −x1 + ςx4 − sin(s) < −η} where the vector field points

toward Σ in Σ+ and away from Σ in Σ−;
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Propositions and General Results

Σ can be split into the following way:

i) The sewing region given by Σc = {x ∈ Σ; | −x1 + ςx4 − sin(s) |> η}
with Σc = Σ+

c ∪ Σ−
c where

i.1) Σ+
c
= {x ∈ Σ; −x1 + ςx4 − sin(s) > η} where the vector field points

away from Σ in Σ+ and toward Σ in Σ−;
i.2) Σ−

c
= {x ∈ Σ; −x1 + ςx4 − sin(s) < −η} where the vector field points

toward Σ in Σ+ and away from Σ in Σ−;

ii) The sliding region given by Σs = {x ∈ Σ; | −x1 + ςx4 − sin(s)| < η}
where the vector field points toward Σ in both Σ+ and Σ−.
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Propositions and General Results

Σ can be split into the following way:

i) The sewing region given by Σc = {x ∈ Σ; | −x1 + ςx4 − sin(s) |> η}
with Σc = Σ+

c ∪ Σ−
c where

i.1) Σ+
c
= {x ∈ Σ; −x1 + ςx4 − sin(s) > η} where the vector field points

away from Σ in Σ+ and toward Σ in Σ−;
i.2) Σ−

c
= {x ∈ Σ; −x1 + ςx4 − sin(s) < −η} where the vector field points

toward Σ in Σ+ and away from Σ in Σ−;

ii) The sliding region given by Σs = {x ∈ Σ; | −x1 + ςx4 − sin(s)| < η}
where the vector field points toward Σ in both Σ+ and Σ−.

iii) For system (2) with η > 0 we have X−h > X+h so there is no
escaping region.

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 20 / 41



Propositions and General Results

Note that these regions are such that the common boundaries between Σ+
c

and Σs (denoted by ∂Σ+
c ) and between Σ−

c and Σs (denoted by ∂Σ−
c )

correspond to tangential contact between Σ and X+ and X−, respectively.
In system (2), these sets are given by

∂Σ+
c = {(x1, 0, x4, s) ∈ R

3 × T
1; X+h(x1, 0, x4, s) = 0}

= {(x1, 0, x4, s); −x1 + ςx4 − sin(s) = η}
∂Σ−

c = {(x1, 0, x4, s) ∈ R
3 × T

1; X−h(x1, 0, x4, s) = 0}
= {(x1, 0, x4, s); −x1 + ςx4 − sin(s) = −η}

(11)

where Xih(p) denotes the Lie derivative of h with respect to the vector
field Xi in p.
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Propositions and General Results

The cubic tangencies of system (2) occur at the subsets of ∂Σ±
c given by

(

−
ζ2(η−1)+η+ζω cos(s)+sin(s)

ζ2+1
, 0,

ζ+ζ sin(s)−ω cos(s)

ζ2+1
, s

)

; 1 − (ω2 − 1) sin(s) 6= 0, for ∂Σ+
c
,

and
(

ζ2(η−1)+η−ζω cos(s)−sin(s)

ζ2+1
, 0,−

ζ+ζ(− sin(s))+ω cos(s)

ζ2+1
, s

)

; 1 − (ω2 − 1) sin(s) 6= 0, for ∂Σ−

c
.

(12)

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 22 / 41



Propositions and General Results

The sliding vector field Xs(x1, 0, x4, s) defined in Σs following the
Filippov′s convex method [Filippov] has the form

ẋ1 = x4,

ẋ4 = −
x1 + ς(η − 1)x4 − (η − 1) sin(s)

η
,

ṡ = ω.

(13)
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Propositions and General Results

The sliding vector field Xs(x1, 0, x4, s) defined in Σs following the
Filippov′s convex method [Filippov] has the form

ẋ1 = x4,

ẋ4 = −
x1 + ς(η − 1)x4 − (η − 1) sin(s)

η
,

ṡ = ω.

(13)

Remark: Observe that the distance between the boundary of the sliding
region (∂Σ+

c and ∂Σ−
c ) is η. However, if η could assume any real value

then for η = 0 the surfaces ∂Σ+
c and ∂Σ−

c coincides and we have no
sliding region. On the other hand, when η < 0 we have no sliding region
and system (2) has an escaping region between ∂Σ+

c and ∂Σ−
c .

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 23 / 41



Proof of the Main Results

Proof of Theorem 1

Taking as initial condition a point (0, 0, z0, s0) satisfying condition

ςz0 − η − sin(s0) > 0

then (0, 0, z0, s0) ∈ Σ+
c ∪ ∂Σ+

c .
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Proof of the Main Results

Proof of Theorem 1

Taking as initial condition a point (0, 0, z0, s0) satisfying condition

ςz0 − η − sin(s0) > 0

then (0, 0, z0, s0) ∈ Σ+
c ∪ ∂Σ+

c .

As X+ is a linear vector field we can solve system (2) and obtain

x1(t) = (η − 1)(cos t − 1) + z0 sin t,

x2(t) = − e
−ςt(eςt+ςz0−1)

ς
+ e

−ςt(ς sin(s0)−ω cos(s0))
ς2+ω2

+
−ς sin(s0+tω)+ω cos(s0+tω)−(η−1)(ς2+ω

2) sin(t)+z0(ς2+ω
2) cos(t)

ς2+ω2 ,

x4(t) =
e
−ςt(ς(−ς sin(s0)+e

ςt (ς sin(s0+tω)−ω cos(s0+tω))+ω cos(s0))+(ς2+ω
2)(eςt+ςz0−1))

ς(ς2+ω2) ,

(14)
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Proof of the Main Results

Now in order to this solution be an one-turn crossing periodic orbit we will
use the symmetry R in the following sense:

a necessary condition for Γς,η,ω(t) being an one-turn periodic orbit is that

Γς,η,ω(π/ω) = (0, 0,−z0, s0 + π).

So, considering Γς,η,ω(t) = (x1(t), x2(t), x4(t), s(t)), we have to solve the
system

x1 (π/ω) = 0, x2 (π/ω) = 0, x4 (π/ω) = −z0.

For ω 6= 1/2n we can solve the first equation of this system with respect
to η to obtain

η =
cos
(

π

ω

)

− z0 sin
(

π

ω

)

− 1

cos
(

π

ω

)

− 1
. (15)
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Proof of the Main Results

Substituting this η in the second and third equations of the previous
system we obtain a single equation that can be solved for z0 obtaining

z0 =
ς sin(s0)− ω cos(s0)

ς2 + ω2
−

tanh
(

πς

2ω

)

ς
.
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Proof of the Main Results

Substituting this η in the second and third equations of the previous
system we obtain a single equation that can be solved for z0 obtaining

z0 =
ς sin(s0)− ω cos(s0)

ς2 + ω2
−

tanh
(

πς

2ω

)

ς
. (16)

So for this choice of z0 and η and since that ω 6= 1/2n, Γς,η,ω(t),
t ∈ (0, π/ω) and for t ∈ (π/ω, 2π/ω) given by the symmetry R represents
an one-turn periodic orbit of (2) if conditions

ςz0 − η − sin(s0) > 0, (17)

and
x2(t) > 0, for t ∈ (0, π/ω). (18)

are simultaneously satisfied.

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 26 / 41



Proof of the Main Results

Now for having (0, 0, z0, s0) ∈ Σ+
c it must satisfy

X+h(0, 0, z0, s0), X−(0, 0, z0, s0) > 0.

Moreover, as system (2) has no escaping region, it is sufficient that
X+h(0, 0, z0, s0) > 0.
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Proof of the Main Results

Now for having (0, 0, z0, s0) ∈ Σ+
c it must satisfy

X+h(0, 0, z0, s0), X−(0, 0, z0, s0) > 0.

Moreover, as system (2) has no escaping region, it is sufficient that
X+h(0, 0, z0, s0) > 0.

From the expressions of X+h and X−h and from the expression of z0 in
(16) we get

X+h(0, 0, z0, s0) = a+(ς, ω) + b+(ς, ω) cos(s0) + c+(ς, ω) sin(s0),
X−h(0, 0, z0, s0) = a−(ς, ω) + b−(ς, ω) cos(s0) + c−(ς, ω) sin(s0).

(19)

with

a+ =





cot
(

π
2ω

)

ς
− 1



 tanh

(

πς

2ω

)

− 1, b+ =
ω

(

cot
(

π
2ω

)

− ς
)

ς2 + ω2
, c+ = −

ς cot
(

π
2ω

)

+ ω2

ς2 + ω2
.
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Proof of the Main Results

Writing
f+(s0) = X+h(0, 0, z0, s0),
f−(s0) = X−h(0, 0, z0, s0),

(20)

as functions of the variable s0 we will find conditions under which f+(s0)
has a zero. For this we start finding conditions in (ς, ω) under which this
function has a double zero in a point s0 ∈ [0, 2π].
It is equivalent to find s0 such that f+(s0) = f ′+(s0) = 0, or to solve

c+ sin(s0) + b+ cos(s0) = −a+,
−b+ sin(s0) + c+ cos(s0) = 0.

This system has solution sin(s0) =
−a+c+

b2+ + c2+
and cos(s0) =

−a+b+

b2+ + c2+
. So

we must have
a2+c

2
+

(b2+ + c2+)
2
+

a2+b
2
+

(b2+ + c2+)
2
= 1.

Or in an equivalent way

a2+ − (b2+ + c2+) = 0. (21)
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Proof of the Main Results

Solving f+(s0) = 0 in terms of s0 we can see that this equation has:

a) a unique solution for a2+ − (b2+ + c2+) = 0;

b) two different solutions for a2+ − (b2+ + c2+) < 0;

c) no solution for a2+ − (b2+ + c2+) > 0.

Rewriting equation (21) in terms of ς and ω we have

a2(ς, ω) cot
2
( π

2ω

)

+ a1(ς, ω) cot
( π

2ω

)

+ a0(ς, ω) = 0. (22)
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Proof of the Main Results

where a2(ς, ω) =
tanh2(πς

2ω )
ς2

− 1
ς2+ω2 , a1(ς, ω) = −2

(

tanh2(πς
2ω )+tanh(πς

2ω )
ς

)

and a0(ς, ω) = tanh2
(

πς

2ω

)

+ 2 tanh
(

πς

2ω

)

+ ς
2

ς2+ω2 .

Note that equation (22) is quadratic in cot
(

π

2ω

)

. Solving it with respect
to cot

(

π

2ω

)

we obtain

cot

(

π

2ω

)

= ς or cot

(

π

2ω

)

=
ς
(

−2
(

ς2 + ω2
)

sinh
(

πς
ω

)

−
(

2ς2 + ω2
)

cosh
(

πς
ω

)

+ ω2
)

2ς2 − ω2 cosh
(

πς
ω

)

+ ω2
. (23)
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Proof of the Main Results
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Figure: Functions f+(s0) and f
−
(s0) (see (20)) for s0 ∈ [0, 2π], ω = 3

2 and
ς = 0, 7 > cot

(

π

3

)

, ς = cot
(

π

3

)

≃ 0, 577 and ς = 0, 3 < cot
(

π

3

)

respectively. In
all pictures the above curves represent function f

−
(s0) and the bellow curves

represent function f+(s0).
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Proof of the Main Results

Case 1: cot
(

π

2ω

)

= ς.
Under this condition we have f+(s0) = −1− sin(s0). This function has
double zero for s0 = 3π/2. And, for this choice of s0, considering (15) and
(16) we have, respectively

η(ω) =
ω2

ω2 + csc2
(

π

2ω

)

− 1
− tanh

(

π cot
(

π

2ω

)

2ω

)

(24)

and

z0 = −
cot
(

π

2ω

)

ω2 + cot2
(

π

2ω

) − tan
( π

2ω

)

tanh

(

π cot
(

π

2ω

)

2ω

)

.

Now as ς = cot
(

π

2ω

)

> 0 and ω > 0 it follows that z0 < 0. And from
X 2
+(0, 0, z0, 3π/2) = −z0 csc

2
(

π

2ω

)

> 0 we get that this point is a visible
fold in ∂Σ+

c .
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Proof of the Main Results

Moreover the graph of η(ω) has the form

0.1 0.2 0.3 0.4

1.0

0.5

0.5

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure: Function η(ω) for ω ∈ (1/8, 1/2) and ω ∈ (1, 4).

where η(ω) > 0 if ω ∈
(
⋃

n∈N (1/(2n + 1), ωn)
)

∪ (1, ω∗).
So for ς = cot

(

π

2ω

)

with ω ∈
(
⋃

n∈N (1/(2n + 1), ωn)
)

∪ (1, ω∗) and η
given by (24) system (2) undergoes a sliding-bifurcation at the point
(0, 0, z0, 3π/2) where z0 is given by (3) (see the second picture of Figure
1).
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Proof of the Main Results

We also observe that if ς > cot
(

π

2ω

)

(that is equivalent to
a2+ − (b2+ + c2+) > 0) system (2) has no one-turn crossing periodic orbit
(see the first picture of Figure 1). It happens because under small
perturbation of the parameter ς in such a way that ς becomes bigger then
cot
(

π

2ω

)

condition (17) is no longer satisfied and the associated system
has a crossing-sliding solution (see [di Bernardo, et al 2007],
[Guardia, et.al. (2010)]).

Now if ς < cot
(

π

2ω

)

(that is equivalent to a2+ − (b2+ + c2+) < 0) function
f+(s0) has two zeroes s̄0 and ŝ0 given by (6) and, for s0 ∈ (s̄0, ŝ0), f+(s0) is
positive (see the third picture of Figure 1). This implies that there exists
an one-turn crossing periodic orbits for system (2) with η given by (4)
since that condition (18) is satisfied.
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Proof of the Main Results

Observe that for fixed (ς, ω) satisfying ς < cot
(

π

2ω

)

we have
(0, 0, z0, s0) ∈ Σ+

c where s0 is taking in the interval (s̄0, ŝ0) in such a way
that η(s0) > 0 where η is given by (4).

Moreover, as in a tangency point we have from (17) that
sin(s0) = ςz0 − η < 0. It follows that π < s̄0 <

3π
2 and so

X 2
+h (0, 0, z0, s0) = −

(

1 + ς2
)

z0 + ς(1 + sin s0)− ω cos s0 > 0.

This implies that (0, 0, z̄0, s̄0) is a fold point. Also it is clear that, for
(0, 0, ẑ0, ŝ0) with ŝ0 ≃

3π
2 we have a fold point.

So by the same reason that in the case ς = cot
(

π

2ω

)

, we have a
crossing-sliding bifurcation to system (2).

M. Lima and J. Cassiano UFABC, Santo Andre, Brazil (First Joint Meeting Brazil-Spain in Mathematics)Discontinuous Dry Friction Oscillators Fortaleza, Dec. 7-10, 2015 35 / 41



Proof of the Main Results

Proof of Theorem 2

First considering system (13) as a two dimensional system defined in all
R
2 it is straightforward to show that this system with η 6= 0 has a periodic

orbit given by (8). Moreover this is the unique periodic orbit of system
(13) when η 6= 0.
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Proof of the Main Results

Proof of Theorem 2

First considering system (13) as a two dimensional system defined in all
R
2 it is straightforward to show that this system with η 6= 0 has a periodic

orbit given by (8). Moreover this is the unique periodic orbit of system
(13) when η 6= 0.

It is important to observe that the sliding system (13) is defined only in
Σs . So for seeing if this orbit is an orbit of system (2) in Σs we have to
study the Lie derivatives X+h and X−h on the points of ϕs .
Doing this it follows that

X+h(ϕs(t)) = −η
(

1 +
a

b
cos(ωt + s0) +

c

b
sin(ωt + s0)

)

,

X−h(ϕs(t)) = η
(

1−
a

b
cos(ωt + s0)−

c

b
sin(ωt + s0)

)

.
(25)
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Proof of the Main Results

Taking f (t, ς, η, ω) = X+h(ϕs(t))X−h(ϕs(t)) we have that in order to
ϕs(t) ⊂ Σs we must have f (t, ς, η, ω) ≤ 0 for all t.

From (25) it is not difficult to see that this inequality follows if and only if
a2 + c2

b2
≤ 1.
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Proof of the Main Results

Taking f (t, ς, η, ω) = X+h(ϕs(t))X−h(ϕs(t)) we have that in order to
ϕs(t) ⊂ Σs we must have f (t, ς, η, ω) ≤ 0 for all t.

From (25) it is not difficult to see that this inequality follows if and only if
a2 + c2

b2
≤ 1.

Moreover, ϕs(t) intersects ∂Σ
±
c for f (t, ς, η, ω) = 0. From this we have

that when
a2 + c2

b2
= 1 (that is equivalent to

(η + 1)ω2 + (η − 1)ς2 − 2 = 0) ϕs is tangent to ∂Σ±
c at a cusp point.
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Proof of the Main Results

Solving equations X+h(ϕs(t)) = 0 and X−h(ϕs(t)) = 0 with respect to t

under the condition (η + 1)ω2 + (η − 1)ς2 − 2 = 0 we obtain t+ and t−.

This implies that the tangency points are given by ϕs(t+) ∈ ∂Σ+ and
ϕs(t−) ∈ ∂Σ−.
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Proof of the Main Results

Solving equations X+h(ϕs(t)) = 0 and X−h(ϕs(t)) = 0 with respect to t

under the condition (η + 1)ω2 + (η − 1)ς2 − 2 = 0 we obtain t+ and t−.

This implies that the tangency points are given by ϕs(t+) ∈ ∂Σ+ and
ϕs(t−) ∈ ∂Σ−.

Also, for η ∈ (0, 1) the periodic orbit escapes from Σs when
(η + 1)ω2 + (η − 1)ς2 − 2 ≥ 0 and for η > 1 the periodic orbit escapes
from Σs when (η + 1)ω2 + (η − 1)ς2 − 2 ≤ 0.

This implies that system (2) performs an adding-sliding bifurcation under
small perturbation of the parameters in such a way that
(η − 1)

(

(η + 1)ω2 + (η − 1)ς2 − 2
)

≤ 0. This concludes the proof of the
theorem.
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THANK YOU!
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