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Definition of minimal set for smooth flows

Let K ⊂ E be a nonempty set and φt the flow of system ẋ = f (x), f of class
C 1. We say that K is a minimal set for such system if K is compact, invariant
for φt and there exists no proper subset of K satisfying these properties. The
minimal set K is trivial if it is a equilibrium point or a periodic orbit.
Otherwise, K is called a non-trivial minimal set.

Denjoy-Schwartz Theorem

A flow φt of system ẋ = f (x), of class C 2 defined in a bi-dimensional compact
connected boundaryless manifold M can not have a minimal set K different
from a equilibrium point or a periodic orbit, unless M = K is the torus.

Poincaré-Bendixson Theorem

Consider system ẋ = f (x) with f ∈ C 1 in some open set of R2 and suppose
that it has a trajectory Γ contained in a compact subset F on which f has only
a finite number of equilibrium points. Then it follows that ω(Γ) is either a
equilibrium point, a periodic orbit or a graphic of such system.
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In summary, it holds that:

The minimal sets for planar systems defined in open sets of
R
2 are equilibrium points and periodic orbits

The minimal sets are trivial

Minimal sets are part of limit sets

They are measure-zero set in R
2

Questions

How about the minimal sets of planar non-smooth vector
fields?

Are they all trivial?

Are they contained in the limit sets?

Are they measure-zero sets in R
2?
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The local trajectory (orbit) φZ (t, p) defined on an interval I of a non-smooth
system is defined as follows:

For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by
φZ (t, p) = φX (t, p) and φZ (t, p) = φY (t, p) respectively, where t ∈ I .

For p ∈ Σc such that X .f (p) > 0, Y .f (p) > 0 and taking the origin of
time at p, the trajectory is defined as φZ (t, p) = φY (t, p) for
t ∈ I ∩ {t ≤ 0} and φZ (t, p) = φX (t, p) for t ∈ I ∩ {t ≥ 0}. For the case
X .f (p) < 0 and Y .f (p) < 0 the definition is the same reversing time.

For p ∈ Σe and taking the origin of time at p, the trajectory is defined as
φZ (t, p) = φZΣ(t, p) for t ∈ I ∩ {t ≤ 0} and φZ (t, p) is either φX (t, p) or
φY (t, p) or φZΣ(t, p) for t ∈ I ∩ {t ≥ 0}. For the case p ∈ Σs the
definition is the same reversing time.

For p a regular tangency point and taking the origin of time at p, the
trajectory is defined as φZ (t, p) = φ1(t, p) for t ∈ I ∩ {t ≤ 0} and
φZ (t, p) = φ2(t, p) for t ∈ I ∩ {t ≥ 0}, where each φ1, φ2 is either φX or
φY or φZΣ .

For p a singular tangency point φZ (t, p) = p for all t ∈ R.
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Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems



Definition of invariance for non-smooth systems

Consider Z ∈ Ω. A set A ⊂ R
2 is invariant for Z if, for each

p ∈ A and all global trajectory ΓZ (t, p) of Z passing through p, it
holds ΓZ (t, p) ⊂ A.

Definition of minimal sets for non-smooth systems

Consider Z ∈ Ω a non-smooth vector field. A set M ⊂ R
2 is

minimal for Z if

(i) M 6= ∅;

(ii) M is compact;

(iii) M is invariant for Z ;

(iv) M does not contain proper subset satisfying (i), (ii) and (iii).
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A non trivial minimal set

An example of non-trivial minimal set

Consider Z = (X ,Y ) ∈ Ω, where X (x , y) = (1,−2x),
Y (x , y) = (−2, 4x3 − 2x), f (x , y) = y and Σ = f −1(0) = {(x , y) ∈ R

2; y = 0}.
Consider also

Λ = {(x , y) ∈ R
2;−1 ≤ x ≤ 1 and x

4/2− x
2/2 ≤ y ≤ 1− x

2}.
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Observe that the set Λ above satisfies:

Z is a planar system

Λ is minimal

med(Λ) > 0

There exists a coincidence of two tangencies, one visible and the other
invisible

The trajectory for any point in Λ meets p for future and past times

Any two points can be connected by a positive or negative trajectory

For each point in Λ, there exists infinitely many trajectories such that
filled up Λ for future or past

There exist infinitely many trajectories which are not dense in Λ
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Definition of positive/negative-invariance for non-smooth systems

A set A ⊂ R
2 is positive-invariant (respectively,

negative-invariant) if for each p ∈ A and all positive global
trajectory Γ+Z (t, p) (respectively, negative global trajectory
Γ−Z (t, p)) passing through p it holds Γ+Z (t, p) ⊂ A (respectively,
Γ−Z (t, p) ⊂ A).

Definition of positive/negative-minimal sets for non-smooth
systems

Consider Z ∈ Ω. A set M ⊂ R
2 is positive-minimal (respectively,

negative-minimal) if

(i) M 6= ∅;

(ii) M is compact;

(iii) M is positive-invariant (respectively, negative-invariant) for Z ;

(iv) M does not contain proper subset satisfying (i), (ii) and (iii).
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A non trivial minimal set

An example of non-trivial minimal set

Consider Z1 = (X ,Y ) ∈ Ω, where X (x , y) = (1,−2x + 1),
Y (x , y) = (−1, (−2 + x)(−22 + x(−7 + 4x))), f (x , y) = y and
Σ = f −1(0) = {(x , y) ∈ R

2; y = 0}. Consider also

Λ1 = {(x , y) ∈ R
2;−3 ≤ x ≤ 4 and

(−4 + x)(−2 + x)2(3 + x) ≤ y ≤ −(−4 + x)(3 + x)}.
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Observe that the set Λ1 above satisfies:

Z is a planar system having Λ1 as minimal and med(Λ1) > 0.

There exists NO coincidence of tangencies

The trajectory for any point in Λ meets q for FUTURE times. The
trajectory for any point in Λo meets p̃ for PAST times

For each point in Λ, there exists infinitely many trajectories which filled
up Λ for simultaneous future AND past times

Λ1 is neither positive-minimal nor negative-minimal
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Chaotic planar non-smooth systems having
non-trivial minimal sets

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems



Definition of topological transitivity

A discontinuous system Z is topologically transitive on an invariant set W if for
every pair of nonempty, open sets U and V in W , there exist q ∈ U, Γ+

Z (t, q) a
positive global trajectory and t0 > 0 such that Γ+

Z (t0, q) ∈ V .

Definition of sentitive dependence

A discontinuous system Z exhibits sensitive dependence on a compact invariant
set W if there is a fixed r > 0 satisfying r < diam(W ) such that for each
x ∈ W and ε > 0 there exist a y ∈ Bε(x) ∩W and positive global trajectories
Γ+
x and Γ+

y passing through x and y , respectively, satisfying

dH(Γ
+
x , Γ

+
y ) = sup

a∈Γ+x ,b∈Γ+y

d(a, b) > r ,

where diam(W ) is the diameter of W and d is the Euclidean distance.

Definition of chaos for non-smooth systems

A discontinuous system Z is chaotic on a compact invariant set W if it is
topologically transitive and exhibits sensitive dependence on W .
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In planar smooth systems there is no chaotic behavior, due to the Jordan curve
Theorem. However, in non-smooth ones it may occur. See next Example.

Observe that, once any two points in Λ can be connected, it holds that

Any two open sets in Λ can be connected. Then there exist topological
transitivity in Λ

Points arbitrarily closed x and y can be connected to others x ′ and y ′,
respectively, in such way that d(x ′, y ′) is sufficient large. Then there exist
sensitive dependence in Λ

Each point in Λ can be connected to itself. Then the set of periodic
points in Λ coincides to it
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Theorem A: Connection between minimal sets and chaotic systems

Let Z be a planar non-smooth vector field and Λ ⊂ R
2 a compact

invariant set. If Λ is simultaneously positive-minimal and
negative-minimal satisfying med(Λ) > 0, then Z is chaotic on Λ.

In order to prove such results, we use the following lemmas:

Lemma 1

Under the same hypotheses of Theorem A, it holds that for any
x , y ∈ Λ, there exist a global trajectory Γ(t, y) passing through y

and t∗ > 0 such that Γ+(t∗, y) = x .

Lemma 2

Under the same hypotheses of Theorem A, if any two points of Λ
can be connected by a global trajectory of Z , then Z is chaotic on
Λ.
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A minimal set without chaotic behavior

Next example shows that Theorem A can not be extended for
ordinary minimal sets. Indeed, the set Λ1 presented here is minimal
for Z1 but this vector field is not chaotic on Λ1.
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Poincaré-Bendixson and Denjoy-Theorem for planar
non-smooth vector fields
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Poincaré-Bendixson for non-smooth systems

Let Z = (X ,Y ) ∈ Ω. Assume that Z does not have sliding motion and it has a
global trajectory ΓZ (t, p) whose positive trajectory Γ+

Z (t, p) is contained in a
compact subset K ⊂ V . Suppose also that X and Y have a finite number of
critical points in K , no one of them in Σ, and a finite number of tangency
points with Σ. Then, the ω-limit set ω(ΓZ (t, p)) of ΓZ (t, p) is one of the
following objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iii) a graph of X or Y ;

(vi) a singular tangency Z .

(iv) a pseudo-cycle of kind I of Z ;

(v) a pseudo-graph of Z ;

Lemma

Under the same hypothesis of the last theorem, the ω-limit set ω(p) of a point
p ∈ V is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or
a union of them.
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Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems
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Denjoy-Schwartz Theorem for non-smooth systems

Under the same hypothesis of the last theorem, the minimal sets of
a given non-smooth systems are trivial and given by one of the
following objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iiii) a singular tangency of Z ;

(iv) a pseudo cycle of Z ;
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Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems



Denjoy-Schwartz Theorem for non-smooth systems

Under the same hypothesis of the last theorem, the minimal sets of
a given non-smooth systems are trivial and given by one of the
following objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iiii) a singular tangency of Z ;

(iv) a pseudo cycle of Z ;
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Chaotic planar piecewise smooth vector fields with non trivial

minimal sets, to appear in Ergodic Theory and Dynamical
Systems.

C.A. Buzzi, T. de Carvalho and R.D. Euzébio, On
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Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems


