CHAOS AND NON-TRIVIAL MINIMAL SETS FOR PLANAR PIECEWISE SMOOTH SYSTEMS

Claudio A. Buzzi IBILCE/UNESP - São José do Rio Preto

First Joint Meeting Brazil-Spain in Mathematics Fortaleza – 07 to 10 december 2015

Co-authors: Rodrigo D. Euzébio and Tiago de Carvalho

Non-trivial minimal sets in planar non-smooth vector fields

Definition of minimal set for smooth flows

Let $K \subset E$ be a nonempty set and ϕ_t the flow of system $\dot{x} = f(x)$, f of class C^1 . We say that K is a **minimal set** for such system if K is compact, invariant for ϕ_t and there exists no proper subset of K satisfying these properties. The minimal set K is **trivial** if it is a equilibrium point or a periodic orbit. Otherwise, K is called a **non-trivial** minimal set.

Denjoy-Schwartz Theorem

A flow ϕ_t of system $\dot{x} = f(x)$, of class C^2 defined in a bi-dimensional compact connected boundaryless manifold M can not have a minimal set K different from a equilibrium point or a periodic orbit, unless M = K is the torus.

Poincaré-Bendixson Theorem

Consider system $\dot{x} = f(x)$ with $f \in C^1$ in some open set of \mathbb{R}^2 and suppose that it has a trajectory Γ contained in a compact subset F on which f has only a finite number of equilibrium points. Then it follows that $\omega(\Gamma)$ is either a equilibrium point, a periodic orbit or a graphic of such system.

Definition of minimal set for smooth flows

Let $K \subset E$ be a nonempty set and ϕ_t the flow of system $\dot{x} = f(x)$, f of class C^1 . We say that K is a **minimal set** for such system if K is compact, invariant for ϕ_t and there exists no proper subset of K satisfying these properties. The minimal set K is **trivial** if it is a equilibrium point or a periodic orbit. Otherwise, K is called a **non-trivial** minimal set.

Denjoy-Schwartz Theorem

A flow ϕ_t of system $\dot{x} = f(x)$, of class C^2 defined in a bi-dimensional compact connected boundaryless manifold M can not have a minimal set K different from a equilibrium point or a periodic orbit, unless M = K is the torus.

Poincaré-Bendixson Theorem

Consider system $\dot{x} = f(x)$ with $f \in C^1$ in some open set of \mathbb{R}^2 and suppose that it has a trajectory Γ contained in a compact subset F on which f has only a finite number of equilibrium points. Then it follows that $\omega(\Gamma)$ is either a equilibrium point, a periodic orbit or a graphic of such system.

Definition of minimal set for smooth flows

Let $K \subset E$ be a nonempty set and ϕ_t the flow of system $\dot{x} = f(x)$, f of class C^1 . We say that K is a **minimal set** for such system if K is compact, invariant for ϕ_t and there exists no proper subset of K satisfying these properties. The minimal set K is **trivial** if it is a equilibrium point or a periodic orbit. Otherwise, K is called a **non-trivial** minimal set.

Denjoy-Schwartz Theorem

A flow ϕ_t of system $\dot{x} = f(x)$, of class C^2 defined in a bi-dimensional compact connected boundaryless manifold M can not have a minimal set K different from a equilibrium point or a periodic orbit, unless M = K is the torus.

Poincaré-Bendixson Theorem

Consider system $\dot{x} = f(x)$ with $f \in C^1$ in some open set of \mathbb{R}^2 and suppose that it has a trajectory Γ contained in a compact subset F on which f has only a finite number of equilibrium points. Then it follows that $\omega(\Gamma)$ is either a equilibrium point, a periodic orbit or a graphic of such system.

イロン 不同 とくほう イロン

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

🗇 🕨 🔺 🖻 🕨 🔺 🖻

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- $\bullet\,$ They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- $\bullet\,$ They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

ヨッ イヨッ イヨッ

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

• • = • • = •

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?

• Are they measure-zero sets in \mathbb{R}^2 ?

A B > A B >

- The minimal sets for planar systems defined in open sets of \mathbb{R}^2 are equilibrium points and periodic orbits
- The minimal sets are trivial
- Minimal sets are part of limit sets
- \bullet They are measure-zero set in \mathbb{R}^2

Questions

- How about the minimal sets of planar non-smooth vector fields?
- Are they all trivial?
- Are they contained in the limit sets?
- Are they measure-zero sets in \mathbb{R}^2 ?

★ 3 → < 3</p>

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t,p) = \phi_X(t,p)$ and $\phi_Z(t,p) = \phi_Y(t,p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

・ロト ・回ト ・ヨト

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t, p) = \phi_X(t, p)$ and $\phi_Z(t, p) = \phi_Y(t, p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

・ロト ・回ト ・ヨト

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t,p) = \phi_X(t,p)$ and $\phi_Z(t,p) = \phi_Y(t,p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t,p) = \phi_X(t,p)$ and $\phi_Z(t,p) = \phi_Y(t,p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

イロト 不得 とくほと くほとう ほ

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t,p) = \phi_X(t,p)$ and $\phi_Z(t,p) = \phi_Y(t,p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

イロト 不得 とくほと くほとう ほ

- For $p \in \Sigma^+ \setminus \Sigma$ and $p \in \Sigma^- \setminus \Sigma$ the trajectory is given by $\phi_Z(t,p) = \phi_X(t,p)$ and $\phi_Z(t,p) = \phi_Y(t,p)$ respectively, where $t \in I$.
- For p∈Σ^c such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the trajectory is defined as φ_Z(t, p) = φ_Y(t, p) for t∈ I ∩ {t ≤ 0} and φ_Z(t, p) = φ_X(t, p) for t∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same reversing time.
- For $p \in \Sigma^e$ and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p)$ is either $\phi_X(t,p)$ or $\phi_Y(t,p)$ or $\phi_{Z\Sigma}(t,p)$ for $t \in I \cap \{t \geq 0\}$. For the case $p \in \Sigma^s$ the definition is the same reversing time.
- For p a regular tangency point and taking the origin of time at p, the trajectory is defined as $\phi_Z(t,p) = \phi_1(t,p)$ for $t \in I \cap \{t \leq 0\}$ and $\phi_Z(t,p) = \phi_2(t,p)$ for $t \in I \cap \{t \geq 0\}$, where each ϕ_1, ϕ_2 is either ϕ_X or ϕ_Y or $\phi_{Z^{\Sigma}}$.
- For p a singular tangency point $\phi_Z(t, p) = p$ for all $t \in \mathbb{R}$.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Definition of invariance for non-smooth systems

Consider $\mathbf{Z} \in \mathbf{\Omega}$. A set $A \subset \mathbb{R}^2$ is **invariant** for Z if, for each $p \in A$ and all global trajectory $\Gamma_Z(t, p)$ of Z passing through p, it holds $\Gamma_Z(t, p) \subset A$.

Definition of minimal sets for non-smooth systems

Consider $Z \in \Omega$ a non-smooth vector field. A set $M \subset \mathbb{R}^2$ is **minimal** for Z if

- (i) $M \neq \emptyset$;
- (ii) *M* is compact;
- (iii) M is invariant for Z;

(iv) *M* does not contain proper subset satisfying (i), (ii) and (iii).

伺い イラト イラト

A non trivial minimal set

An example of non-trivial minimal set

Consider $Z = (X, Y) \in \Omega$, where X(x, y) = (1, -2x), $Y(x, y) = (-2, 4x^3 - 2x)$, f(x, y) = y and $\Sigma = f^{-1}(0) = \{(x, y) \in \mathbb{R}^2; y = 0\}$. Consider also

 $\Lambda = \{(x,y) \in \mathbb{R}^2; -1 \le x \le 1 \text{ and } x^4/2 - x^2/2 \le y \le 1 - x^2\}.$

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

- Z is a planar system
- Λ is minimal
- $med(\Lambda) > 0$
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in Λ

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- $med(\Lambda) > 0$
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in Λ

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- $med(\Lambda) > 0$
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in Λ

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- $\bullet\,$ There exist infinitely many trajectories which are not dense in $\Lambda\,$

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ , there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in Λ

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets *p* for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- $\bullet\,$ There exist infinitely many trajectories which are not dense in $\Lambda\,$

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in Λ, there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in $\boldsymbol{\Lambda}$

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in A, there exists infinitely many trajectories such that filled up A for future or past
- There exist infinitely many trajectories which are not dense in A

Buzzi, C.A., Carvalho, T., Euzébio, R. D.

- Z is a planar system
- Λ is minimal
- med(Λ) > 0
- There exists a coincidence of two tangencies, one visible and the other invisible
- The trajectory for any point in Λ meets p for future and past times
- Any two points can be connected by a positive or negative trajectory
- For each point in $\Lambda,$ there exists infinitely many trajectories such that filled up Λ for future or past
- There exist infinitely many trajectories which are not dense in Λ
 Buzzi, C.A., Carvalho, T., Euzébio, R. D.
 Chaos and non-trivial minimal sets for piecewise smooth systems

Definition of positive/negative-invariance for non-smooth systems

A set $A \subset \mathbb{R}^2$ is **positive-invariant** (respectively, **negative-invariant**) if for each $p \in A$ and all positive global trajectory $\Gamma_Z^+(t, p)$ (respectively, negative global trajectory $\Gamma_Z^-(t, p)$) passing through p it holds $\Gamma_Z^+(t, p) \subset A$ (respectively, $\Gamma_Z^-(t, p) \subset A$).

Definition of positive/negative-minimal sets for non-smooth systems

Consider $Z \in \Omega$. A set $M \subset \mathbb{R}^2$ is **positive-minimal** (respectively, **negative-minimal**) if

(i) $M \neq \emptyset$;

(ii) *M* is compact;

(iii) M is positive-invariant (respectively, negative-invariant) for Z;

(iv) *M* does not contain proper subset satisfying (i), (ii) and (iii).

A non trivial minimal set

An example of non-trivial minimal set

Consider
$$Z_1 = (X, Y) \in \Omega$$
, where $X(x, y) = (1, -2x + 1)$,
 $Y(x, y) = (-1, (-2 + x)(-22 + x(-7 + 4x)))$, $f(x, y) = y$ and
 $\Sigma = f^{-1}(0) = \{(x, y) \in \mathbb{R}^2; y = 0\}$. Consider also

$$\begin{array}{ll} \Lambda_1 = & \{(x,y) \in \mathbb{R}^2; -3 \leq x \leq 4 \text{ and} \\ & (-4+x)(-2+x)^2(3+x) \leq y \leq -(-4+x)(3+x)\}. \end{array}$$

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

э

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets q for FUTURE times. The trajectory for any point in Λ° meets p̃ for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

A > A > A >

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets q for FUTURE times. The trajectory for any point in Λ° meets p̃ for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

A > A > A >

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets q for FUTURE times. The trajectory for any point in Λ° meets p̃ for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

A > A > A >

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets q for FUTURE times. The trajectory for any point in Λ° meets p̃ for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

伺い イラト イラ

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets *q* for FUTURE times. The trajectory for any point in Λ^o meets *p̃* for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

F 4 3 5 4

- Z is a planar system having Λ₁ as minimal and med(Λ₁) > 0.
- There exists NO coincidence of tangencies
- The trajectory for any point in Λ meets q for FUTURE times. The trajectory for any point in Λ° meets p̃ for PAST times
- For each point in Λ, there exists infinitely many trajectories which filled up Λ for simultaneous future AND past times
- Λ_1 is neither positive-minimal nor negative-minimal

Chaotic planar non-smooth systems having non-trivial minimal sets

Definition of topological transitivity

A discontinuous system Z is topologically transitive on an invariant set W if for every pair of nonempty, open sets U and V in W, there exist $q \in U$, $\Gamma_Z^+(t, q)$ a positive global trajectory and $t_0 > 0$ such that $\Gamma_Z^+(t_0, q) \in V$.

Definition of sentitive dependence

A discontinuous system Z exhibits sensitive dependence on a compact invariant set W if there is a fixed r > 0 satisfying r < diam(W) such that for each $x \in W$ and $\varepsilon > 0$ there exist a $y \in B_{\varepsilon}(x) \cap W$ and positive global trajectories Γ_x^+ and Γ_y^+ passing through x and y, respectively, satisfying

$$d_H(\Gamma_x^+,\Gamma_y^+) = \sup_{a\in\Gamma_x^+,b\in\Gamma_y^+} d(a,b) > r,$$

where diam(W) is the diameter of W and d is the Euclidean distance.

Definition of chaos for non-smooth systems

A discontinuous system Z is chaotic on a compact invariant set W if it is topologically transitive and exhibits sensitive dependence on W.

・ロト ・同ト ・ヨト ・ヨト

Observe that, once any two points in Λ can be connected, it holds that

- Any two open sets in Λ can be connected. Then there exist topological transitivity in Λ
- Points arbitrarily closed x and y can be connected to others x' and y', respectively, in such way that d(x', y') is sufficient large. Then there exist sensitive dependence in Λ
- Each point in Λ can be connected to itself. Then the set of periodic points in Λ coincides to it

Observe that, once any two points in Λ can be connected, it holds that

- $\bullet\,$ Any two open sets in Λ can be connected. Then there exist topological transitivity in $\Lambda\,$
- Points arbitrarily closed x and y can be connected to others x' and y', respectively, in such way that d(x', y') is sufficient large. Then there exist sensitive dependence in Λ
- Each point in Λ can be connected to itself. Then the set of periodic points in Λ coincides to it

Observe that, once any two points in Λ can be connected, it holds that

- $\bullet\,$ Any two open sets in Λ can be connected. Then there exist topological transitivity in $\Lambda\,$
- Points arbitrarily closed x and y can be connected to others x' and y', respectively, in such way that d(x', y') is sufficient large. Then there exist sensitive dependence in Λ
- $\bullet\,$ Each point in Λ can be connected to itself. Then the set of periodic points in Λ coincides to it

Observe that, once any two points in Λ can be connected, it holds that

- $\bullet\,$ Any two open sets in Λ can be connected. Then there exist topological transitivity in $\Lambda\,$
- Points arbitrarily closed x and y can be connected to others x' and y', respectively, in such way that d(x', y') is sufficient large. Then there exist sensitive dependence in Λ
- Each point in Λ can be connected to itself. Then the set of periodic points in Λ coincides to it

Theorem A: Connection between minimal sets and chaotic systems

Let Z be a planar non-smooth vector field and $\Lambda \subset \mathbb{R}^2$ a compact invariant set. If Λ is simultaneously positive-minimal and negative-minimal satisfying $med(\Lambda) > 0$, then Z is chaotic on Λ .

In order to prove such results, we use the following lemmas:

_emma 1

Under the same hypotheses of Theorem A, it holds that for any $x, y \in \Lambda$, there exist a global trajectory $\Gamma(t, y)$ passing through y and $t^* > 0$ such that $\Gamma^+(t^*, y) = x$.

Lemma 2

Under the same hypotheses of Theorem A, if any two points of Λ can be connected by a global trajectory of Z, then Z is chaotic on Λ .

(日) (同) (日) (日)

Theorem A: Connection between minimal sets and chaotic systems

Let Z be a planar non-smooth vector field and $\Lambda \subset \mathbb{R}^2$ a compact invariant set. If Λ is simultaneously positive-minimal and negative-minimal satisfying $med(\Lambda) > 0$, then Z is chaotic on Λ .

In order to prove such results, we use the following lemmas:

Lemma 1

Under the same hypotheses of Theorem A, it holds that for any $x, y \in \Lambda$, there exist a global trajectory $\Gamma(t, y)$ passing through y and $t^* > 0$ such that $\Gamma^+(t^*, y) = x$.

Lemma 2

Under the same hypotheses of Theorem A, if any two points of Λ can be connected by a global trajectory of Z, then Z is chaotic on Λ .

・ロト ・同ト ・ヨト ・ヨト

Theorem A: Connection between minimal sets and chaotic systems

Let Z be a planar non-smooth vector field and $\Lambda \subset \mathbb{R}^2$ a compact invariant set. If Λ is simultaneously positive-minimal and negative-minimal satisfying $med(\Lambda) > 0$, then Z is chaotic on Λ .

In order to prove such results, we use the following lemmas:

Lemma 1

Under the same hypotheses of Theorem A, it holds that for any $x, y \in \Lambda$, there exist a global trajectory $\Gamma(t, y)$ passing through y and $t^* > 0$ such that $\Gamma^+(t^*, y) = x$.

Lemma 2

Under the same hypotheses of Theorem A, if any two points of Λ can be connected by a global trajectory of Z, then Z is chaotic on Λ .

(人間) (人) (人) (人) (人)

Next example shows that Theorem A can not be extended for ordinary minimal sets. Indeed, the set Λ_1 presented here is minimal for Z_1 but this vector field is not chaotic on Λ_1 .

Poincaré-Bendixson and Denjoy-Theorem for planar non-smooth vector fields

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.

```
(iv) a pseudo-cycle of kind I of Z;
```

```
(v) a pseudo-graph of Z;
```

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;

v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Buzzi, C.A., Carvalho, T., Euzébio, R. D. Chaos and non-trivial minimal sets for piecewise smooth systems

Let $Z = (X, Y) \in \Omega$. Assume that Z does not have sliding motion and it has a global trajectory $\Gamma_Z(t, p)$ whose positive trajectory $\Gamma_Z^+(t, p)$ is contained in a compact subset $K \subset V$. Suppose also that X and Y have a finite number of critical points in K, no one of them in Σ , and a finite number of tangency points with Σ . Then, the ω -limit set $\omega(\Gamma_Z(t, p))$ of $\Gamma_Z(t, p)$ is one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iii) a graph of X or Y;
- (vi) a singular tangency Z.
- (iv) a pseudo-cycle of kind I of Z;
- (v) a pseudo-graph of Z;

Lemma

Under the same hypothesis of the last theorem, the ω -limit set $\omega(p)$ of a point $p \in V$ is one of the objects described in items (i), (ii), (iii), (iv), (v) and (vi) or a union of them.

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iiii) a singular tangency of Z;
- (iv) a pseudo cycle of Z;

• • = • • = •

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iiii) a singular tangency of Z;

(iv) a pseudo cycle of Z;

一名 医下口 医下

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iiii) a singular tangency of Z;

(iv) a pseudo cycle of Z;

- A IR N - A IR N

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;

```
(iiii) a singular tangency of Z;
```

```
iv) a pseudo cycle of Z;
```

化原因 化原因

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;

```
(iiii) a singular tangency of Z;
```

iv) a pseudo cycle of Z;

Under the same hypothesis of the last theorem, the minimal sets of a given non-smooth systems are trivial and given by one of the following objects:

- (i) an equilibrium of X or Y;
- (ii) a periodic orbit of X or Y;
- (iiii) a singular tangency of Z;

(iv) a pseudo cycle of Z;

- C.A. BUZZI, T. DE CARVALHO AND R.D. EUZÉBIO, Chaotic planar piecewise smooth vector fields with non trivial minimal sets, to appear in Ergodic Theory and Dynamical Systems.
- C.A. BUZZI, T. DE CARVALHO AND R.D. EUZÉBIO, On Poincaré-Bendixson Theorem and non-trivial minimal sets in planar nonsmooth vector fields, preprint.
- A.F. FILIPPOV, *Differential Equations with Discontinuous Righthand Sides*, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988.
- M. GUARDIA, T.M. SEARA AND M.A. TEIXEIRA, Generic bifurcations of low codimension of planar Filippov Systems, J. Diff. Eq. 250 (2011), 1967–2023.

伺 と く ヨ と く ヨ と

Thank you for your attention!